ESMINATICN CF THE ENGEI'S CURVES FCR IRAK (URBAR \& RURAL)

BY

BDEJAK BEEDABAD

THESIS

SUBU.IMCSD IC MES SOHCOI CE GRADUATE SIUDISS IN PARMYAI

MASZOR OE SCIBNOE

II.

3OCuCmics
SHIIARZ UIIVERSITY
SHIRAZ, IRAN:

Freahma fudgiq \ldots. . Daceoster, Assist. Prof of
Ahmad Vespaf.............. Seononics (Clesimen)

5
Vessel, Assist. Prof. of
Deonomics Kusmeia, Assist. Prof. of Jity and Regional Planaing Confittee in Cherge

ACEMCNI EDGENENTS

I am very grateful to my major advisor, Dr. Dacgostar, for his instrumental comments and valuable guidance during the course of this study. My thanks also \& O to Dr. Vessal and Dr. Kasraie, for their constructive criticism of the manuscript; and to the staff of the Statistical center of Iran for their assitances in data preparing and permission for using the computer.

ESMIFARICN CP THE ENGEI'S CURVES FCA IRAN (UREAN \& RUNAI)
 by Beejen Beecabac

Eneel's curves wich were applied, for the first tire by Ernest Incel in 1857, are of the most useful procedures utilized by the researchers throughout the vorld. Cne of the important results of the Engel's curves is income elasticity of commodity expenciture, which has aprlication in projection of demard, and consequently in economic plennine.

In this study we have tried to estimate different income elasticities via Engel's curve' estimation for Iran(urben \& rural seperately). Therefore, the prepared samples by the Statistical Center of Iran which include nearly 15,000 urban and 15,000 rural statistical cases have been utilized. For the first time in Iran raw and sufficient data has been used.

In addition to the produced models by previous researchers, new models also have been introcuced to improve this estimating procedure. Commodities have been diviced into 18 food and non-food buncles.

Cur sincines confirm our hypotheses: upward convexity for necessities; upward concavity for luxuries; linear form total non-food bundles. The hypotheses are new steps to complete the Engel's curves theory.

TABLE OF CCMTEMTS

IIST OF TABIES
Page iix.
IIST OR FIGURES xiv
CHAP mER
I. INTAODUCTION 1
II. INCCNE=CONSUNYTICN CLRVE, ENGEL CURVE
ANL INCCIE EIASTICICY 5
ENGEI'S CURVES THEORY 9
III. RBVIEZ OF IImeRATURE 11
Empirical Nodel of the EnEel Curves 15
The Gap Between Ingel's Curve Theory \& Empirical Analysis 19
Past Stucies For Iran 23
Page
IV. NODEL BUIIDIIG 25
Hypotheses 28
Analysis of the Fodels
Model (A) 35
40
Model (B) 42
Model (C) 43
Model (D) 44
Nodel (E) 45
Fodel (F) 46
Model (G) 47
Model (E) 48
Mociel (I) 50
Nodel (J) 51
Kodel (E) 52
Fodel (L) 53
Model Selection \& Theoritical Hynotheses 55
V. MATZRIALS 60
Sample Design of the Urben Household Budget Survey 61
Sample Design of the Rural Fousehold Budget Survey 63

Page

VI. RESUITS AII DISCUSEICN 71
Main Tables. 71
Best Fitted Models 118
Findings 121
S10 Total Non-Food 124
S20 Total Food 126
SO2 Clothing 128.
SO3 HousinE. 130
SO4 Furniture 132
SO5 Eealth \& Fiedical Care 134
S06 Transport \& Coimmunications 136
S07 Entertainment 138
SO8 Personal Services 140
S11 Barinaceous 142
S12 Neat \& Fish 143
S13 Lairy Products 145
S14 Eidible Oils 1.4 .6
S15 Vegetable \& Fruit 147
S16 Nut \& Seed 1.48
S17 Confectionary \& Tea 149
S18 Sauce, Taste \& Remainder Foods 150
S10 Iririks. \& Tobacco 1.51
Interpretation \& Conclusions 158
VII. STMAARY hild RECCNHENAMICNS Page 1.65
Summary
165
165
Policy Recommendation.
1.68
1.68
Recommencations for Further Research.. 1.7.1
SELECIED BIEIIOGRAFHY 17.3
APPEIDICES 1.85

LIST OF TABIES

Table Page

1. (Urban) Numbers and distribution ofhousehold and household persons in the1356 sample by family size.67
2. (Rural) Numbers and distribution ofhousehold and household persons in the
1356 sample by family size 68
3. (Urban) Numbers and distribution of household and household persons in the 1356 sample by seprated expenciture groups/monthly, rial 69
4. (Rural) Numbers and distribution ofhousehold and household persons in the1356 sample by seprated expendituregroups/monthly, rial70
5. (Urban) Neens and standard deviations of the variables. 72
Page
6. (Rural) Neans and stancard deviations of the variables. 7.3
7. (Urban) Correlation Coefficients matrix. 74
8. (Rural) Correlation Coefficients matrix 78
9. (Urban) S20 Total food Engel curves estimation 82
10. (Urban) S10 Total non-food Ingel curve estimation 83
11. (Urban) SO2 Clothing Bneel curve estimation 84
12. (Urban) S03 Fousing Engel curve estimation. 85
13. (urban) So4 Furniture Engel curve estimation 86
14. (Urban) SO5 Fealth \& medical care Engel curve estimation 87
15. (Urban) SO6 Transport \& communications EnEel curve estimation 88
16. (Urban) SC7 Entertainment Engel curve estimation 89
17. (Urban) S 08 Personal services Engel curve estimation 90
18. (Urban) S11 Farinaceous Engel curve
estimation 91
19. (Urban) S12 Nieat i\& fish Engel curve estimation 92
20. (Urban) S13 Dairy products Engel curve estimation 93
21. (Urban) S14 Edible oils Engel curve estimation 94
22. (Urban) S15 Vegetable \& fruit Engel curve estimation 95
23. (Urban) S16 Nut \& seed Engel curve
estimation 96
24. (Urban) S17 Confectionary \& tea Engel curve
estimation. 97
25. (Urban) S18 Sauce \& taste \& remainder foods Engel curve estimation. 98
26. (Urban) S19 Drinks \& tobacco Engel curve estimation. 99
27. (Rural) S20 Total food Engel curve estimation 100
28. (Rural) S10 Total non-food Engel curve estimation. 101
29. (Rural) S02 Clothing Engel curve estimation 102
30. (Rural) SO3 Housing Engel curve estimation 103
31. (Rural) S04 Furniture Engel curve estimation 104
32. (Rural) SO5 Health \& medical care Engel curve estimation. 105
33. (Rural) S06 Transport \& communication Engel curve estimation. 106
Page
34. (Rural) SO7 Entertainment Engel curve estimation. 107
35. (Rural) SO8 Personal services Engel curve estimation 1.08
36. (Rural) S11 Farinaceous Engel curve estimation. 109
37. (Rural) S12 Neat \& fish Engel curve estimation. 110
38. (Rural) S13 Dairy products Engel curve estimation. 111
39. (Rural) S14 Edible oils Engel curve estimation. 112
40. (Rural) S15 Vegetable \& fruit Engel curve estimation 113
41. (Rural) S16 Nut \& seed Engel curve estimation 114
42. (Rural) S17 Confectionary \& tea Engel curve estimation. 1.1543. (Rural) S18 Sauce \& taste \& remainder foodsEngel curve estimation116
43. (Rural) S19 Drinks \& tobacco Engel curve estimation. 117
44. (Urban \& Rural) Income elasticity of expenditure derived from constant elasticity mocel ('(G)') 152
45. (Urben \& Rural) Income elasticity of eypenditure derived from the best fitted models, at the means of the veriables 153
46. Expenditure elasticities of rural and/or farm populations for selected cormodities in different countries. 154
47. Elesticities for individual countries andfor all countries combined.155
48. Gross elasticities for four expendituregroups with respect to total expenditure andadjusted elasticities for food.156
49. Income elasticities for eight expenditure grouns for different courtries. 157

IISm OF FIGURES

FigurePage
a. Typical income-consumption curve withboth goods normal7b. Typical income-consumption curve withone of the goods becomes inferior7c. Typical shape of an Engel curve withthe constent expenditure/incomeratio9d. Typical shape of an Engel curve withthe decreasing expenditure/incomeratio.9e. Typical shape of an Engel curve withthe increasirg expenditure/incomeratio9
f. Typical shape of an Engel curve with
a diminishing point of return. 9
g. Typical shape of an Engel curve 27
Page

1. Iognormal Engel curves 40
2. Model (A) case of nonmal Eoods 41
3. Nodel (A) case of inferior goods 41
4. Vodel (B) case of normal goods 42
5. Nodel (B) case of inferior goods 42
6. Nodel (C) case of inferior goods 43
7. Nodel (C) case of normal goods 43
8. Model (I) case of normal goods 44
9. Model (D) case of inferior goods 44
10. Model (E) case of normal goods 45
11. Nodel (E) case of inferior goods. 45
12. Model (F) case of normal goods 47
13. Model (F) case of inferior goods 47
14. Nodel (G) case of normal goods 48
15. Model (G) case of inferior goods. 48
Page
16. Nodel (i) case of normal goods 49
17. Nodel (H) case of inferior goods. 49
18. Nodel (I) case of normal goods. 50
19. Model (I) case of inferior goods. 50
20.Model (J) case of ncrmal goods. 5.1
20. Model (J) case of inferior goods 51
21. ModeI (K) case of normal goods 53
22. Kodel (K) case of inferior goods. 53
23. Nociel (I) case of normal goods 54
24. Model (I) case of inferior goods. 54
25. Varietion of "m" in the nodels
$S=A+B Y^{M}$ 58

Estimation of income elasticity has made facilities generally for economic plannere for lone-term and short-term projections of demand. As a scientific tool for governments it is a worthy guide for them to know and distinguish the necessity and non-necessity commodities in the society, and decision making about transfer of their production / distribution to private or public sectors. Governments can apply the income elasticity in development planning and in programming price subsidies, rationing and people's diet. The government can increase her revenues by levying indirect taves on goods which have low income elasticities; and also indirectly diminishes the luxury production by levying indirect taxes on commodities which have high income elasticities, and are known as socially undesirable goods - with a glance to their income elasticities.

In the private sector, entrepreneurs can use income elasticity with national income statistics to forecast demand and invest accordingly.

The income elasticity may be interpreted as follows: For every one percent increase in family money income, there is a corresponding increase of the indicated percentage in
the family expenditure for a particular commodity or commodity bundle.

If an increase of one unit in income, causes less than one unit increasein demand (expenditure), the demand is said to be inelastic or the good is said to be a necessity. On the other hand, if an increase of one unit in income causes the demand for an item to increase by more than unity demand is to be elastic or the good or bundle a luxury. The only exception would be in the case of inferior goods to the extent that a decrease in income will resul, t in an increase in the consumption of a good.

Although the income elasticity based on the family budget statistics underestimates the income elasticity based on the quantity data, it can still be used in estimation and forecasting present and future demand.

The traditional procedure to estimate income elasticity is estimation of the Engel's curve. Engel's curve is a functional relation between family expenditure on a commodity or commodity bundle and family income (total eypenditures). These curves have many advantages, can be easily estimated and do not possess the shortcomings of cerand functions.

The relation between consumption and income - that is,
an Engel curve - is particulary useful in understanding the consequences of economic development. As incomes rise, consumers usually buy many goods that were not purchased before, and decrease their consumption of many other goods. The more narrowly goods are defined, the more both patterns tend to be observed whereas aggregation hides the introduction of new goods and elimination of the old ones. The introduction of goods dominates on balance so that the variety of goods consumed is positively related to income. The agricultural sector has always declined relative to other sectors as countries have experienced significant development. Part of the explanation is that agricultural products have a low income elasticity; therefore, as a country's income grows, resources are shifted (relatively and at times absolutely) from agriculture into services and manufacturing. This is not the whole story, however, since agricultural products also have a low price elasticity, the secular decline in the relative price of agriculture has also contributed to its decreasing importance.

Income elasticities alone, however, cannot explain all the effects of development on consumption, as can be seen in
the growth of the senvice section. Since the incore Elasticity of services is rot much Vigher then that of material goods, the secular erowth in income can expiain only a smell part of the recistribution of lebor to the service sector.

Cther evemples of the use of Engel curves cen be found in the analysis of fertility, consumption law's proposed by Keynes, anc so on (G.S. Decker 1971).

In thie study we try to estimate Engel curve for urben and rurel ereas of Iran in the year 1356 (1977). Tre preaent vesearch is besed on the rew date -for the first time-derived from the Statistical Eenter of Iran, family budget files which incluces nearly 30,000 statistical cases (observations) with 18 bundles of commodities. Fwelve econometric mociels are choser, five of them have been examinec by the previous researchers. Our endeavour to use the above characters is to improve this method of estimation, so seven extre new mociels are under examination. According to their shapes ve divide the 12 models to three major Eroups: upward convex, upward concave and linear, and test them for necessities, luxuries anc total non-food bundles. The last study' for Iran hac been in the year 1353(1074), so as tastes and other related variables have been changed, estimation of new coefficients wouldbe necessary. Another shortcoming of the variables, calculated for each city or region seperately, and then have pooled for urbar and rural.

Chatise II.

INCORE-CONSUMPIICN CURVZ; ENGEL CURVE AND INCONE
ELASTICITY
By increasing incone and constent prices, we could move the consumer's budget line steadily outward and note the point he chooses at each income level. We cauld also decrease income below the oricinal level and trace out points between oricinal level and the origin. If we join all the points representing the consumer's choice at each income level, with prices being constant, the curve we obtain is called the income-consumption curve. It joins points on successive indifference curves that have the same slopes, since the slope of the buciget line does not change; on the other hand the income-consumption curve is the locus of equilibrium budgets resultine from various levels of money income and constant money prices. Figure (a) illustrates a typical income-consumption curve with both goods normal. Figure (b) illustrates a case in which x_{i} becomes an inferior good at the income level corresponding to the point A.

We expect that goods which are inferior at high income levels will be normal at low income levels, and that no goods will be inferior at sufficiently low incomes (Ferguson \& Gould 1075).

The information contained in the incore-consumption curve may be used to derive Engel curve for each commodity or commodity bundle. Instead of showing how the choice between the two goods varies with income, we can take one of the goods and see how the quantity of this good varies with income. So an Engel curve is a function relating the equilibrium quantity purchased of a commodity to the level of money income, (with constant prices). We usually plot the expenditure on the good against income. Since prices are constant, expenditure is directly proportional to quantity.

It is helpful to make use of a certain elasticity concept as a descriptive term here. We define percentage change in the expenditure on a good for a 1 per cent change in income as the income elasticity, prices being constant. If the income elasticity is less than unity, expenditure increases by a smaller proportion than income, so that the ratio of expenditure to income falls as income rises, as in figure(d). If the income elasticity is greater than unity, the expenciture/income ratio rises, as in(e) while the raiio is constant, as in (c), for unit elasticity. Engel curves shown in figures (c), (d), and (e), all show expenditure increasing with income, so the good is normal. Figure (f)
shows expenditure decreasing beyond the income level "y", so this good is inferior for higher income levels.

Goods whose income elasticity is greater than unity are sometimes called luxury goods or superior goods, and goods whose income elasticity is less than unity and greater than zero are called essential goods or necessaties. The terms are not altogether apt.

With constant S / Y

with increasing S/Y

With decreasing S / Y

$\begin{aligned} & \text { with }=\text { diminishing point } \\ & \text { of return }\end{aligned}$

Thus, we have a set of descriptive terms that expresses the relationship between income and expenditure on a particular commodity or commodity bundle, with prices constant. If expenditure falls with a rise in income, we have an inferior good. If expenditure rises with income, the good is normal. A normal good may be a luxury good (income elasticity greater than unity) or an essential good (income elasticity less than unity but positive). Notice that the words "inferior", "normal", "superior", "luxury", "necessity":anc "essential", are used here only to describe the income elasticity of a good, no more and no less. It is possible that a given good will be an inferior good for one consumer and a superior good for some other consumer (Ferguson \& Gould 1975; K. Lancaster 1974).

BNGEL'S CURVI RHBCEY

An Engel curve is a relationship between income and the expenditure on a particular commodity, all other things being equal. So the Engel curves express the expenditure on a good as a function of income only, or:
$p_{i} x_{i}=\phi_{i}(y)$
These functions are so named in honour of Ernest Engel (1857) who seems to have been the first to formulate empirical laws governing the relation between income and particular categories of expenditure. The following 'Laws' can be found in his work: (E. Encel 1857)
(i) Food is the most important item in huusehold budgets;
(ii) The proportion of total expenditures allocated to food decreases as income increases;
(iii) The proportion devoted to clothing and housing is approximately constant, while the share of luxury items increases when income increases.

Let us take a closer look at the cited 'ccteris paribus' condition. The Engel curve is a demand function derived by (constraint) utility maximization.

Suppose, for example, that a demand equation is specified as:

$$
x_{i}=a_{i}+b_{i} \frac{p_{i}}{p_{i}}+d_{i} \frac{y}{p_{i}}+e_{i}
$$

and rewritten as ∇
$p_{i} x_{i}=\left(a_{i} p_{i}+b_{i} p_{j}\right)+d_{i} y+e_{i} p_{i}$
We then see that, in the regression line
$p_{i} x_{i}=c_{i}+k_{i} y+u_{i}$
c_{i} is an estimate of $\left(a_{i} p_{i}+b_{i} p_{j}\right)$ and k_{i} an estimate of d_{i}, on the assumption that prices are constant. It should be clear that Engel curves are demand equations in which all prices are supposed to be constant. That is why cross-section data are appropriate, as they relate to one period of time, so that prices romain unchanged.

In theory, the d_{i} coefficient describes the reaction of one and the same incividual whose income is increasing, with given prices and a given utility function (Phlips 1974).

Empirical work on so-called Engel curves - relationship between specific expenditures (or forms of saving) and income level, holding other relevant variables constant - was first done about the mid-nineteenth century, with the work of Engel on household budgets and, some time later, with the work of a number of U.S. and British statisticians on demand relationships (G.J. Stigler 1954). Since then empirical studies in this area have multiplied enormously, spurred by the growing interest in statistical methods. The past three decades have witnessed numerous empirical studies for specific commodities. At the same time, this period has witnessed a growing emphasis on methodological improvments, and it is here that the principal developments in this area have taken place. For this reason, the present review is relatively brief and in view of the orientation of this paper, focuses on the use of household-budget data.

Engel's law - that the pronortion of household expenditure on food declines as household income rises - has by now been verified literally hundreds of times (J.N.Morgan 1958).Generally, most studies also provide strong support for what is known as Schwabe's law, namely, that the per cent of income spent for housing declines as income rises, although using permanent income concept M.Reid alleges that high-quality housing in reality is one of the main luxuriesior consuniers. Further support for both
laws was obtained in study by Houthakker in which he derived Engel curves for four expenditure groups based on data from each of forty surveys from seventeen countries (Houthakker 1957). It is interesting that the function used in his study, as in many others, was essentially the same as used by Engel in his original paper, namely, a double-log relationship between the specific expenditure and total expenditures.

Recent studies reflect a growing interest in ascertaining the determinants not only of food expenditures but of a wide range of household purchases, such as housing, clothing, house furnishings and services. These studies tend to bear out earlier findings on income elasticity, yielding low elasticities for food and housing, elasticities close to unity for 'clothing and education, and higher elasticities for various types of recreation, personal care, home operation and other services (R.P. Mack 1952). In this area, linear (in some cases, logarithmic)'single-equation forms have been used to derive marginal propensities and income elasticities for a wide range of consumption categories. This was the approach used by Prais \& Houthakker (1955) on English data, and by Crocket \& Friend (1962) on American data. The Friend-Crockett study using multiple regression analysis discusses the effects on aII major consumption categories of a large number of family characteristics including income. Among other things, their result indicate that family sipe and age, next to income, appear to exert the main influence on family consumption, particularly through
the influence of family size on food expenditures and of age on durable-goods purchases. The study also finds that income elasticities are reduced substantially once variables reflecting other family characteristics are introduced into the relationships.

At the same time dissatisfaction has been expressed over the rigid assumptions inherent in this approach. This dissatisfaction was crystallised to some extent by the fincings of Prais \& Houthakker that a semi-log form is preferable for necessities and a double-log form is preferable for luxuries (Prais \& Houthakker 1955); and by Stuvel \& James that the use of only one form of equation to explain variations in food expenditures over the entire range of incomes and social classes in Holland is unsatisfactory (G.Stuvel \& S.F.James 1950).

One result of this dissatisfaction has been some interesting attempts to modify the Engel-curve approach. One approach has been to introduce non-linearities into the expenditure-income relationship to aliow for the possibility that a comnocity may behave as a luxury in one range of income and as a necessity in a different range (S.J.Prais 1952-53). A Sigmoid response curve, which has an upper asymptote and at the same time passes through the origin, appears to yield realistic results in such instances (J.Aitchison \& J.A.C.Brown 1954-55).

Another approach, one that uses linear equations, has been
to explain consumer purchases of specific goods on the basis of relationships between stocks and wealth rather than between income and expenditure. Quasi-Engel curves relating inventories to a measure of wealth have been derived by Cramer (1958) for a wide variety of household goods based on two Dutch surveys, and by Houthakker \& Haldi for automobiles based on panel data for U.S. families (Houthakker \& Haldi 1960). The latter study is particularly interesting, showing that at a given level of income gross investment in automobiles varies inversely with beginning-of-theyear inventory, and that at a given level of beginning inventories gross investment rises with income level.

Dissatisfaction with the linear-equation approach has also led to the use of analysis of varinace rather than multiple regression to ascertain the net effect of different variables on household expenditures. Analysis of variance offers a more flexible approach'to the estimation of relationships, since no assumption is necessary regarding the form of the functional relationship. As a result, studies using this technique do not always give the clear-cut simple results yielded by multiple regression, but in many ways appear to be more realistic, bringing out effects of various characteristics not only singly but in combination with each other (V.Iippitt 1959, R.Ferber 1968).

EMPIRICAL MODELS OF THE ANGEL CURVES

A major landmark empirical work in this area is brown to be done by both Allen and Bowley (Allen \& Bowley 1935).

Allen \& Bowley initially assume the marginal rate of substitution R between any two goods x_{i} and x_{j} to be the ratio of the linear expression of the amounts of goods pourchased: $x_{1}, x_{2}, \ldots, x_{n}$. Clearly the underlying utility function is quadratic. For the two goods example we have:

$$
\begin{equation*}
R=\frac{a_{1}+a_{11} x_{1}+a_{12} x_{2}}{a_{2}+a_{21} x_{1}+a_{22} x_{2}}=\frac{p_{1}}{p_{2}} \tag{1}
\end{equation*}
$$

Assume the bucket constraint

$$
\begin{align*}
y & =p_{1} x_{1}+p_{2} x_{2} \tag{2}\\
\text { or } \quad y & =s_{1}+s_{2}
\end{align*}
$$

where s_{1} and s_{2} are expenditures on the respective commodities, and y is the total expenditure. Working with cross-section data, prices could be assumed constant; therefore, (1) may be written as:

$$
\begin{equation*}
a_{1} p_{2}+a_{11} \frac{p_{2}}{p_{1}}\left(p_{1} x_{1}\right)+a_{12} p_{2} x_{2}=a_{2} p_{1}+a_{21} p_{1} x_{1}+a_{22} \frac{p_{1}}{p_{2}}\left(p_{2} x_{2}\right) \tag{4}
\end{equation*}
$$

or:

$$
\begin{equation*}
\mathrm{b}_{1}+\mathrm{b}_{11} \mathrm{~s}_{1}+\mathrm{b}_{12} \mathrm{~s}_{2}=\mathrm{b}_{2}+\mathrm{b}_{21} \mathrm{~s}_{1}+\mathrm{b}_{22} \mathrm{~s}_{2} \tag{5}
\end{equation*}
$$

Using (3) to eliminate first s_{1} and, then s_{2} from (5) we will set two equations in the form:

$$
\begin{align*}
& s_{1}=k_{1} \cdot y+c_{1} \tag{6}\\
& s_{2}=k_{2} \cdot y+c_{2} \tag{7}
\end{align*}
$$

where k_{1}, k_{2}, c_{1} and c_{2} are in terms of constant $b^{\prime} s$. Beacuse prices are constant, (6), 2(7) represent a set of linear EnE ミ? curves (Allen.and Bowley pp. 109-111)

In this case (6), \&(7) automatically satisfy the adding up condtion requiring that $k_{1}+k_{2}=1$ and $c_{1}+c_{2}=0$.

Of course linear specification of Engel curves has some undesirable consequences. To examine this point let us consider the income elasticity "Ey" of commodity 'i', given a linear Engel curve:

$$
\begin{equation*}
s_{i}=p_{i} x_{i}=k_{i} y+c_{i} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
E y=\frac{\frac{d x_{i}}{x_{i}}}{\frac{d y}{y}}=\frac{d x_{i}}{d y} \cdot \frac{y}{x}=\frac{k_{i}}{p_{i}} \cdot \frac{y}{x_{i}}=k_{i} \cdot \frac{v}{s_{i}} \tag{9}
\end{equation*}
$$

$E y=\frac{\mathbf{k}_{i}}{e_{i}} \quad$ where $\quad e_{i}=p_{i} x_{i} / y$
From (10) it is clear that income elasticity Ey being bigger than, equal to or smaller than unity depends on whether k_{i} is bigger than, equal to or smaller than e_{i}. The later depends on the sign of c_{i} in (8) in the following way.

Let us divide (8) through by y, we get

$$
\begin{equation*}
e_{i}=\frac{\dot{s}_{i}}{y}=\frac{p_{i} x_{i}}{y}=k_{i}+\frac{c_{i}}{y} \tag{11}
\end{equation*}
$$

Using (11) $c_{i}>0 \sim e_{i}>k_{i}$, then from (10) $e_{i}>k_{i} \rightarrow E y<1$
and furthermore,

$$
\begin{equation*}
\operatorname{Lim} \underset{y \rightarrow \infty}{e_{i}}=\operatorname{Lim}\left(k_{i}+\frac{c_{i}}{y}\right)=k_{i} \tag{12}
\end{equation*}
$$

This implies that By approaches one as income increases. This latter point is true for both luxuries and necessities ie for luxuries as income increases the income elasticity cecreass and the converse is true for necessities. This result is not consistent with commen sense.

Prais and Houthakker (1955) tried different functional forms on the bases of the following assumptions:
a)... There is an income below which a commodity is not purchased, b)... There is a satiety level, that is, a maximum to the quantity of the commodity consumed which is not excedded however high income may rise..." (Prais and Houthakker p. 82)- for some commodities.

In addition to the linear form they examine the following forms each of which exhibits a peculier characteristics.
a.) Double log
b.) Semi ICG
c.) Hyperbolic

$$
\operatorname{Iog} s_{i}=a_{i}+b_{i} \log y
$$

$$
s_{i}=a_{i}+b_{i} \operatorname{IOE} y
$$

$$
s_{i}=a_{i}-b_{i} / y
$$

d.) Lce-reciprocal Log $s_{i}=a_{i}-b_{i} / y$

Equation a.) represents constant income elasticity b_{i}, with the attribute that for both luxuries and necesities, as income y increases expenditure s_{i} increases but the change in the rate of increase is positive for the former and negative
for the latter category of goods.
Equation b.) represents a situation where up to certain level of income (i.e $y=\exp \left(-a_{i} / b_{i}\right)$) commodity i is not consumed, but from that point on expenditure on i increases with income. In this case income elasticity (b_{i} / s_{i}) isa.decreasing function of expenditure on commodity i.

For equation c.) $u p$ to the point $y=b_{i} / a_{i}$ commodity i is not consumed, from that point as income increases expenditure on i increases and, approaches a satiation level, $s_{i}=a_{i}$. In this case income elasticity $E y=b_{i} /\left(y \cdot a_{i}-b_{i}\right)$ is a decreasing function of income.

Finally for equation d.) income elasticity $E y=b_{i} / y$ decreases with income and marginal expenditure changes sign from positive to negative as total expenciture y rises. In other words there is an infléetion point at point $y=b_{i} / 2$.

After a careful: comparison of the statistical results, Prais and Houthakker conclude that the semi-logaritmic function gives the best results, as far as food items are concerred. This is understandable: the semi-logaritmic form makes it possible for a commodity to appear as a luxury at low income levels, and asa necessity (income elasticity below one) at higher income levels. For all other goods and services , the double-logaritmic form gives the best statistical results (Phlips 1974).

THE GAP BETWEEN SNGBL'S CURVE THECRY \& EPPIRICAI ANAIYSIS Prais and Houthakker's choice among specifications a. to d. is based on the goodness of fit. But what about their theoritical plausibility? Comparing their approach with Allen and Bowley's, we come to realize that while much has been gained in terms of descriptive power, much has been lost in terms of theoritical plausibility. By introducing more realastic changes of income elasticities, Prais and Houthakker loose contact with the theory of utility maximization. Indeed, there is no longer any reference (except some will be mentioned) toa specific utility function. Moreover, these specifications are not compatible with utility maximization, as they do not satisfy the adding-up criterion sxactly. The approach is entirely pragmatic.

The same can be said about similar realistic specifications, such as the lognormal distribution analysed by Aitchison and Brown (1957), the family of the Engel curves introduced by Fornqvist (1941) and used by Wold and Jureen (1952), or the forms sugeested by Champernowne (1969). Much work remains to be done to find specifications that are both realistic and theoretically plausible.

To ensure the theoretical plausibility of estimated Engel curves, the investigator has to make sure that the general restrictions of demand theory are satisfied, as emphasized in Houthakker (1960a.). The problem simplifies
drastically, as all restrictions in te:rs of price derivatives (homogenity, symmetry, negativity of the own substitution effect) disappear, given that prices are constant. The only restriction that remains is the adding-up condition, which says that, if.

$$
\begin{equation*}
s_{i}=\phi_{i}(y) \quad i=1,2, \ldots, n \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
& s_{i}=p_{i} x_{i} \tag{14}\\
& \sum_{i=1}^{n} \phi_{i}(y)=y
\end{align*}
$$

or

$$
\begin{equation*}
\sum_{i=1 d y}^{n} \frac{d s_{i}}{d}=1 \tag{15}
\end{equation*}
$$

The sum of the marginal propensities to consume (or the marginal budget shares) has to be equal to one at all income levels.

It is a property of linear regression equation that they satisfy the adding-up criterion. That is if a set of linear Engel curves obeying (8) are fitted to an additive data set, then the regression estimates will satisfy: $\sum_{i=1}^{n} c_{i}=0$ and $\sum_{i=1}^{n} k_{i}=1$.

However, linearity is not without other theoretical implications. Iinearity of the Engle curves implies that the
utility function is of a special form. Investigating the class of additive utility functions yielding demand functions which are locally linear in income, or, equivalently, yielding Engel curves which are Iinear in some region of the commodity space, Pollak (1971b) finds that an additive utility function yields demand functions locally linear in income if and only if it is either of the form

$$
\begin{align*}
& U=\sum_{i=1}^{n} b_{i} \log \left(x_{i}-d_{i}\right) \tag{17}\\
& b_{i}>0, \quad\left(x_{i}-d_{i}\right)>0, \quad \sum_{i=1}^{n} b_{i}=1 \tag{18}
\end{align*}
$$

which is the familiar Stone-Geary function, or

$$
\begin{equation*}
u=\sum_{i=1}^{n} v_{i}\left(b_{i}+\varpi_{i} x_{i}\right)^{@} \tag{19}
\end{equation*}
$$

which is a generalization of the additive quadratic utility function, or
which is an additive function used by Thipman (1965),
Furthermore, they find that linear form appropriates only for fruits, beacuse income elasticity for fruits is about unity.

Although these forms exhibit a better empirical fit, they do not even satisfy the adding-up condition, and therefore, there is lack of compatibility with utility meximizetion
behavior. To the best of our knowledge, so far no system of Engel curves has been developed that overcomes the inconveniences of Allen-Bowley's linearity and Houthakker's lack of theoretical compatibility. In one case Carlevaro(1976), proposes the system of demand equations $x_{i}=f_{i}(y) \cdot g\left(p_{1}, p_{2}, \ldots, p_{n}\right)$. After imposing the theoretical constraints, he concludes that in order for theoretical restrictions to hold $f_{i}(y)$ should equal to y. This leads back to the system of Bngel curves linear in income.

Interestingly it is in fact possible to utilize flexible functional forms to construct systems of Engel curves that could overcome these dificulties.

PAST SMULIES FCR IRAN

The empirical studies in this field for Iran are very brief; there have been no innovations to enable them to estimate income elasticity.

The first study was done by Bank Markazi Iran for the years 1338 (1959), under the title:"Survey of Consumer Expenditure and Income in 32 Urban Cities of Iran", (Bank Narkazi Iran, 1962), in thich urban income elasticity has been estimated; (the estimated income elasticities are for 32 cities altogether, not separately). Their data was presented in the average forms; and elasticity is derived from constant elasticity model (Double-Log).

The escond stucty was carried out for the year 1347 (1968), Ly Dent: Markazi Iran, (Bank Markazi Iran 1971), under the title: 'Income Elasticity of Demand for Goods and Services in Urban Areas of Iran during 1347"The scope of the study is wide kut the variables are the averages of the raw data; tre coublelog model hes been choser.

The Statistical Center of Iran studies are for the year $1347-4 \%$ (1068-60), and 1351(1972), which is for urban areas with some items for rural areas, double-Iog model has been used. Variables are in the form of averages (SCI 1347-1348, SCI 1351).

For the years 1351(1972) (EMA, Industry \& Construction Center), 1353(1074) (EMA 1356) Bark Narkazi Iran has two estimations using Prais ì Houthakker's five rocels. Estimations are for food items and for urban areas; the data is in the form of averages.

Utah State University under the direction of A. . Ie Baror has stimated a pooled model for the years: 1238 \& 1347 (1059 \& 1968) for urban areas; and another model for the years: 1342 \& 1343 \& $1344(1953-65)$ for rural areas and $1342(1963)$ for Tehran (A. Ie Baron 1070). The household-size variable has ertered into the mociels which are Double-Iog and Semi-Iog; variables are in the form of averages.

This stucy does not use average data and so is not similar to the past studies for Iran. The methodology of the application of the data ($r=w^{\prime}$ data) of this research is similar to the works of R.G.I. Allen \& A.I. Eowley (1953), and NurulIslam (1966).*
*Nurul Islam apnlied Prais \& Houthakker's five models to the ruràl data of Jast Fakistan.

In this chapter we shall be concerned with the use of budget studies or family expenditure survey to explor the allocation decision. The reasons for using this data stems from the apparent richness of the statistical information. With reference to demand functions which aim to measure the effects of price and income changes on quantities demended, it is bright that the estimates of price effects have not been very successful. This, it has been claimed, stems from the correlation between income and prices which usually occurs in time series data. With cross-section data prices are usually considered fixed and thus it is possible that the income effect can be reasured best by using this kind of data.

Expenditure surveys often enable us to do much more than fust. measuring income effects, beacuse observations on the so-called 'ruisance' factors can provide estimates which allow us to assess the effects on demand of demographic changes. Even more interesting , expenditure surveys can provide the data to measure the economies of scale in consumption, and derive equivalent adult scales. Nost of these things are done in Prais and Houthakker (1955) where two British surveys are analysed..Asimilar work has been performed in the U.S.A, but this study has some more advantages and completness in some aspects of the previous studies.

Now we begin with a consideration of the difficulties of using cross-section cata to quantify the concepts of theoretical demand analysis. The basic assumption is that "... by observing consumers in different circumstances at the same time, information may be obtained which is relevant in forcasting the behaviour of any particular consumer when his circumstances change through time". This means that budget stiidies may not be usefull if dynamic factors or consumer interdependence are present. Dynamic factors stem from habit formation, durability or decisions being based on expectations.

Aggregation over cormodities is a more troublesome problem. In the pure theory of consumer there are n 'goods'. The statistical definition of a 'good' may include a number of qualities or varieties of the good which in theory should be separate goods. Furthermore, new goods are introduced to the consumer whereas the theory assumes that number of the goods are fixed. When a new good is introduced expenditure on substitute goods is discouraged. Since substitutes must predominate in a consumer's budget and since more new goods are introduced as a consumer becomes wealthier we should expect a typical Engel curve (i.e., the relation between expenditure on good i and income) to approach an asymptote. We shall only concern ourselves here with nine food and seven non-food aggregates.

The first step in the analysis is to decide on a functional form. Two a prior considerations are taken into account namely (1) in general there will be a level of income below which the consumer purchase none of the good and (2) there will be a saturation level unless the consumer switches to a better quality in which case the expenditure will continue to rise but more slowly. Thus the function should have the shape illustrated in figure (g), (Bridge 1071).

Typical shape of an Angel's curve

HYFCTHESES

Now we try to explain our hypotheses upon which our rodels will be based, and then test them with urban and rurel data of Iran.

First Eypothesis:
Upvard convex Engel curves should fit better to necessities (Commocity or Bundle). Nathematically these conditions should be satisfied:

$$
\begin{aligned}
& \frac{\partial S}{d Y}>0 \\
& \frac{d^{2} S}{d Y^{2}}<0
\end{aligned}
$$

When $d^{2} S / d Y^{2}$ isnegative, by increasing income the pronortion allocated to the expenciture of the purchasing of the commodity or commodity bundle increases but less thar income increments. This phenomenon is similar to the situation of the necessities in the consumer bucget.

Second Fypothesis:
Upward concave Engel curves shoulc fit better to the luyuries (Commocity or Bundle). Natheratically these conditions should be satisfied:

$$
\begin{aligned}
& \frac{\dot{c} S}{d \bar{Y}}>c \\
& \frac{\dot{Q}^{2} S}{d Y^{2}}>0
\end{aligned}
$$

When $\mathrm{d}^{2} S / \mathrm{d} \mathrm{Y}^{2}$ is positive, by increasing incoine the proportion allocated to the expenditure of the purchasing of the commodity or commodity bundle increases but greater than income increments. This phenomenon is similar to the situation of the luxuries in the consumer bucket theory.

Third Hypothesis:

Total nonfood bundle ha's constant marginal propensity to consume; or as a consumer becomes wealthier, he allocates a constant proportion of his budget to the total non-food expenditures. An the other hand we also cannot take this bundle inside the groups of luxuries or necessities theoritically. Nathematically - with respect to the first end second hypotheses - these conditions should satisfy:

$$
\begin{aligned}
& \frac{d S}{d Y}=1 P P^{*}=B=\text { constant } \\
& \frac{d^{2} S}{d Y^{2}}=0
\end{aligned}
$$

*oPE $=$ Nereinal Propensity to Expend.

In this research with respect to our hypotheses we consider twelve functions wich five of them have veen used by previous researchers and they have been explainec in the previous chapters. One of the new seven models has been chosen to express the the converse characters of the Prais \& Houthakker Semi-Iog model, so that it fits to the luxuries better. Three of the remaining six models which are builth to test the first hypothesis are convex upward. The remainine three rodels which are builth to test the second hypothesis are concave upward. The differences among the previous six models are related to their curvatures which will be explained in the following sections.

The estimating econometric models are as follow:-

$$
\begin{gather*}
S_{i}=a_{i}+b_{i} Y \tag{A}\\
S_{i}=a_{i}+b_{i} \operatorname{Ln}(Y) \tag{B}\\
S_{i}=a_{i}+b_{i}\left(\frac{1}{Y}\right) \tag{c}\\
S_{i}=a_{i}+b_{i}(Y)^{2} \tag{D}\\
S_{i}=a_{i}+b_{i}(Y)^{1 / 2} \tag{E}\\
\operatorname{Ln}\left(S_{i}\right)=a_{i}+b_{i} Y \tag{F}\\
\operatorname{Ln}\left(S_{i}\right)=a_{i}+b_{i} \operatorname{In}(Y) \tag{G}\\
\operatorname{Ln}\left(S_{i}\right)=a_{i}+b_{i}\left(\frac{1}{Y}\right) . \tag{H}\\
S_{i}=a_{i}+b_{i}(Y)^{3} \tag{I}\\
S_{i}=a_{i}+b_{i}(Y)^{1 / 3} \tag{J}\\
S_{i}=a_{i}+b_{i}(Y)^{2 / 3} \tag{K}\\
S_{i}=a_{i}+b_{i}(Y)^{3 / 2} \tag{L}
\end{gather*}
$$

The commodity bundles are as follow:

$$
\mathbf{i}=02,03, \ldots, 08,10,11, \ldots, 19,20
$$

S_{02} : Clothing
S_{03} : Housing
$S_{04}:$ Furniture
S_{05} : Health \& Medical Care
S_{06} : Transport \& Communications
S_{07} : Entertainment
S_{08} : Personal Services
$S_{10}:$ Total Non-Food
S_{11} : Farinaceous
S_{12} : Meat \& Fish
S_{13} : Dairy Products
S_{14} : Edible Oil
S_{15} : Vegetable \& Fruit
S_{16} : Nut \& Seed
S_{17} : Confectionary \& Tea
S_{18} : Sauce, Taste \& Remainder Foods
S_{19} : Drink \& Tobacco
S_{20} : Total Food

The estimation method is O.L.S. (Ordinary Least Square) and optimum values for coefficients a_{i} and b_{i} are obtained from the following formulas:

$$
\begin{aligned}
& B=\frac{\sum(Y-\bar{Y})(S-\bar{S})}{(Y-\bar{Y})^{2}} \\
& A=\bar{S}-B \bar{Y}
\end{aligned}
$$

The significance of B can be tested by evaluating the following F ratio:

$$
F=\frac{\sum(\hat{S}-\bar{S}) / 1}{\sum(S-\hat{S}) /(N-2)}
$$

The proportion of variance of S explained,i.e., the goodness of fit of the regression equation, can be evaluated by examining the square of bivariate correlation:which is a natural measure of prediction accuracy and the strength of linear association is the ratio of explained variation in the dependent variable S to the total variation in S.

$$
R^{2}=\frac{\sum(S-\bar{S})^{2}-\sum(S-\hat{S})^{2}}{\sum(S-\bar{S})^{2}}
$$

or:

$$
R^{2}=\frac{\sum(\hat{S}-\bar{S})^{2}}{\sum(S-\bar{S})^{2}}
$$

Durbin-Watsongtest for autocorrelation:

$$
\text { D.W. }=\frac{\sum_{i=2}^{n}\left(e_{i}-e_{i-1}\right)^{2}}{\sum_{i=1}^{n} e_{i}^{2}}
$$

where:
A : Intercept
B : Slope
\hat{S} : Estimation of S
$\overline{\mathrm{S}}$: Mean of S
\bar{Y} : Mean of Y
N : Number of Observations
\dot{e}_{i} : Residual for Observation i
S_{j} : Expenditure of Commodity J
Y : Total Expenditure

ANALYSIS OF THE NODELS

The demand by a single consumer for each commodity can be written as a function of the consumer's income and all market prices. If prices are held constant we have:

$$
x_{i}=x_{i}\left(y \mid p_{1}, \ldots, p_{n}\right)
$$

expressing demand as a function solely of the consumer's income; a relation now generally known as the consumer's Engel curve for commodity i which can be written as:

$$
p_{i} x_{i}=\phi_{i}(y)
$$

The estimation of the form and parameters of functions of the above types from a cross-section of budget data rests on the assumption that on average the differences in consumption patterns between rich and poor households can be ascribed to their differences in current income. Other differences between the consumption patterns of individual households are regarded as stochastic and adequately described by a selected probability distribution.

It is, however, necessary to pay special attention to the concept of income and its representation by the statistical measures typically available. Given the ideal conditions for the eelection of the sample of households described above, it is still clear that a household's wealth, both in total and in terms
of its ownership of particular assets, wili influence its current consumption pattern. S ince in a cross-section of households wealth is in general positively correlated with current income, the calculation of Engel curves without allowance for the separate influence of wealth is likely to be misleading if the relationship is used for prediction through time, scince a sudden increase in income will not be matched by a similar increase in wealth. In a similar way we shall ignore for the time being both the effects of the household's past income and consumption history and effect of its expectations. Indeed,it will be also simpilistic to icnore the problem of savings altogether, and to treat the income variable as though it were identical with total expenditure on consumer goods and services.

Given all the above simplifying assumptions, from the pure theory, or rather directly from the budget restraint itself, we draw the conclusion that Engel curve should possess the property of aggregation: predicted expenditures for each good should adi up to the given total. This is the only help that theory gives $u s$, and it is at first sight odd that this is one property of Engel curves which, since Allen \& Bowley (1935), has most consistently ignored. The reason appears to be that, as Nicholson and Champernowne have show, if ordinary least square estimation is used, the most general form of Engel curve which satisfies
the restriction must contain a linear term in income. In general other equations have for various reasons been preferred. Let us look, therefore, at the most important characteristics which the mathematical form of the curve should have.

Ideally an Engel curve ought to be capable of represnting luxuries, necessaties and inferior goods. There is a good deal of empirical evidence to support the proposition that for a wide range of commodities, income elasticities are declining functions of income. Certainly we might extend Engel's law for food consumption, namely that its income elasticity is less than unity, by the further proposition that the income elasticity of food consumption declines as income increases, Prais a Houthakker(1955) noted that Engei curves with declining income elasticities fit budgetary data better than curves with constant elasticities.

The hypothsis of declining income elasticity is consistent with but weaker than the hypothesis of a saturation level demand, which in turn may be based on physiological or technical considerations, and certainly seems to apply at least to a sub-class of commodities. It is worth distinguishing between two variations of the saturation hypothesis, which may be called the absolute and relative saturation hypotheses respectively. The absolute hypothesis means that for the commodity in question there exists a finite level of demand which is not exceeded, either as income
increases indefinitely or as prices decrease indefinitely; this hypothesis reflects the fact that the marginal utility of the commodity becomes zero, or turns negative, at a finite level of consumption. Mathematically, therefore, for this case of absolute saturation, we have:

$$
\begin{aligned}
& x_{i}=x_{i}\left(y, p_{1}, \ldots p_{i}, \ldots, p_{n}\right) \\
& x_{i} \longrightarrow k_{i} \text { as } y \longrightarrow \infty \text { given } p_{i} \text { or as } p_{i} \longrightarrow 0, \text { given } y .
\end{aligned}
$$

The relative saturation hypothesis on the other hand relates only to Engel curve behaviour: consumption tends to a saturation level as income increases at a given price, but the saturation level is itself a function of price. As price falls, the relative saturation level in general increases, but it may or may not terid to an absolute saturation level.

These considerations indicate that the idealised Engel curve has the form:

$$
x_{i}=k_{i}\left(I^{-1} p\right) f_{i}\left(y I^{-1}\right)
$$

wherein the saturation level k_{i} is a function of relative prices only (I is a general price index) and the function f_{i} is continuous such that:

$$
\begin{aligned}
& f_{i}(0)=0 \\
& f_{i}(\infty)=1
\end{aligned}
$$

that is, it has the form of a statistical distribution function.

Such a function exhibits infinite elasticity at zero income, which tends continuously to zero as income increases, remaining positive throughout. Since the curve passes through the origin and represents luxuries in the lower range and necessities in the higher range, it is necessarily sigmoid in shape and possesses a point of inflexion. Mathematical candidates for such a function which have been widely used, (Tornqvist 1941; Wold \& Jureen 1953; Fisk 1958-9; Champernowne1969.) are the lognormal distribution function, the logistic distribution function, and the log-reciprocal function. Such an Engel curve cannot' represent inferior goods, though it is plausible in some cases that after reaching a maximum level of consumption at finite income, the income elasticity may turn negative and the good becomes inferior. It is however, rare that the obsexved range of income is sufficient to show all the phases of luxury, necessity and inferiority, and most analysts have been content to treat inferior goods as specjal cases. Figure (1) shows the graphical characteristics of the lognormal Engel curve, for the normal and inferior good respectively.

In all the models, it is assumed that the stochastic vector e_{i} has the usual properties of zero expectation', constant variance and independence of y. All the models have the property that simple regression techniques can be applied after the appropriate transformation, so that the basic models may easily be elaborated
in other directions. A point worth noting here is that it is usual, where transformation is needed to assume that the error term e_{i} may be similarly transformed (Deaton \& Brown 1972).

Fig. (1): Lognormal Engel curves.
The simple two-parameter curves which have been used in this study, can be applied for cross-section samples, and may be regarded as convenient approximations to different ranges of the full sigmoid curve. Now let's have a closer look at the cited models.

$$
\operatorname{MODEL}(A): \quad S=A+B Y
$$

The shape of this model is linear as shown by figures (2) \& (3). Its income elasticity :

$$
E=\frac{S-A}{S}=1-A / S=1 /(1+A / B Y)
$$

When B>O the Engel curve shows a normal commodity, figure (2),
by $B>0$ and $A>0$ commodity is a necessity, its income elasticity is zero at the point $S=A, Y=0$ and tends to one when $Y \rightarrow \infty$ figure (2). By $B>0$ and $A<O$ commodity is a Iuxury, its income elasticity is infinity at the point $S=0, Y=-A / B$ and tends to one when $Y \rightarrow \infty$ figure (2).

When $B\langle O, A\rangle O$ commodity is an inferior one; its income elasticity is zero at the point $S=A, Y=0$ and tends to minus infinity up to the point $S=0, Y=-A / B$. figure (3).

In the region where the elasticity is around unity, the linear form is a good approximation, though it should be noted that if the intercept is positive (yielding an elasticity less than unity) the elasticity then tends upwards towards unity as income increases.

$$
\operatorname{MODEL}(B): \quad S=A+B \operatorname{Ln} Y
$$

Shape of the model is shown by the figures (4) \& (5). Its income elasticity:

$$
E=B / S=B /(A+B \operatorname{Ln} Y)
$$

$B\rangle 0$ is for normal goods; when $B>0$ and $S<B$ commodity is luxury, by $B>0$ and $S>B$ commodity is necessity and $0 \leqslant \leq 1$, figure (4). When $B<0$ the curve. is expressing an inferior good figure (5).

In the first part of the range of necessities the semi-log form is useful, since although this form does not possess a saturation value, its income elasticity continuously declines toward zero as income increases. Income elasticity is infinity
at the point $S=O, Y=\exp (-A / B)$ and tends to one un to the point $S=B, Y=\exp ((B-A) / B)$ and then tends to zero when $S, Y \rightarrow \infty$. for iferior goods in the case $B<O$ income elasticity is minus infinity at the point $S=O, Y=\exp (-A / B)$ and tends to zero by tending S toward infinity or decreasine income toward zero.

$$
\text { MODEL }(C): \quad S=A+B / Y
$$

Shape of this model is shown by the figures (6) \& (7). Its income elasticity:

$$
E=-1+A / S=-B /(A+B Y)
$$

B)O is for inferior goods which their elasticities are between zero and minus one or minus one and minus infinity, for the former A should be greater than zero; and there exists a minimum level of expenditure $S=A$; for the latter A should be negative figure (6).

By $B<0$ and $A>0$ the model shows normal goods with a saturation level $S=A$; when income is less than $-2 B / A$, or $Y<-2 B / A$; or expenditure on a commodity is less than $A / 2$, or $S\langle A / 2$, commodity is luxury; when this condition does not satisfy or $S\rangle A / 2, Y\rangle 2 B /-A$, commodity is necessity. In this case there is a saturation level $S=A$, figure (7). The range of variations of income elasticity in this case is: $0\langle E \leqslant \infty$.

$$
\operatorname{MODEL}(D): \quad S=A+B Y^{2}
$$

Shape of this model is shown: at the figures (8) \& (9).
Its income elasticity:

$$
E=2(1-A / S)=2\left(1-A /\left(A+B Y^{2}\right)\right)
$$

By $A\langle O, B\rangle 0$ for normals $0 \leqslant\langle\langle 2 ; S\langle 2 A$ necessity, s そA Iuyurios. If $B\rangle O$ so $A<0$, model is suitable for luxuries which their elasticities are between two and infinity, $2\langle\mathbb{E} \leqslant \infty$, Figure (8). Income elasticity is infinity at the point $S=0$ \& $Y=\left\lvert\,(-A / B)^{\frac{1}{2}}!\right.$ and declines to two when income tends to infinity $\mathrm{E} \rightarrow 2$ by $\mathrm{Y} \rightarrow \infty$.

By $B\langle O$ and $A\rangle C$ the model is expressing an inferior good figure (9). In this case income elasticity is zero at the point $S=A$ \& $Y=0$ and declines to minus infinity up to the point $S=0 \& Y=\left|(-A / B)^{\frac{1}{2}}\right|$ where the income elasticity at this point is minus infinity. This model is not suitable for necessities.

$$
\operatorname{MODEL}(E): \quad S=A+B Y^{\frac{1}{2}}
$$

Shape of this model is shown at the figures (10) \& (11). Its income elasticity is:

$$
\left.E=\frac{1}{2}(1-A / S)=\frac{1}{2}(1-A)(A+B Y)^{\frac{1}{2}}\right)
$$

If $B>O$ model is expressing normal goods, by $A<O$ the model is suitable for commodities which their income elasticities are between infinity and half $\infty \leqslant \leqslant\left\langle\frac{1}{2}\right.$; by $A>0$ for commodities whose income elasticities are between zero and half, $\frac{1}{2}<\mathbb{E} \leqslant 0$.

For the former up to the point $S=|A|$ or $Y=4 A^{2} / B^{2}$ the income elasticity is between infinity and one and shows luxuries after that point or $S\rangle|A|$ model shows necessities figure (10). By $B<O$ and A>O model is suitable for inferior goods figure (11); the income elasticity is zero at the point $S=A \& Y=0$ and declines to minus infinity up to the point $S=0 \& Y=A^{2} / B^{2}$.
$\operatorname{MODEL}(F): \quad \operatorname{InS}=A+B Y$
Shape of this model is show n by, the figures (12) \& (13).
The functional form of this model had been $S=a e^{B Y}$ before transformation. By taking natural lo'garithm of both sides we get:

$$
\operatorname{In} S=\operatorname{In}\left(a e^{B Y}\right)
$$

or

$$
\operatorname{InS}=\operatorname{In} a+\operatorname{Ln} e^{B Y}
$$

we define $A=$ Ina
so

$$
\operatorname{In} S=A+B Y
$$

Its income elasticity is:

$$
E=B Y=\operatorname{In} S-A
$$

A should be positive for having real solution.
If $B\rangle O \& A>0$ model is suitable for normal goods, the range of its income elasticity is between zero and infinity $0 \leqslant<\infty$. Income
elasticity is zero at the point $S=e^{A} \& Y=0$ and tends to one up to the point $S=e^{A+1}$ and $Y=1 / B$ which is the range of necessities by increasing income toward infinity income elasticity also tends to infinity for luxuries. Figure (12). By $B\langle C$ \& $A\rangle O$ model is expressing inferior goods; income elasticity is zero at the point $S=e^{A-1}$ \& $Y=0$ and tends to minus infinity by tending income toward infinity. ${ }^{\text {igigure (}}$ (13).

Shape of this model is shown at the figures (14) \& (15). The functional form of this model had been $S=a Y^{B}$ or $S=e^{A} Y^{B}$ before transformation, by taking natural logarithm of both sides we get

$$
\operatorname{Ln} S=\operatorname{In} a+B \operatorname{Ln} Y
$$

we define

$$
A=\operatorname{Ln} a
$$

so

$$
\operatorname{Ln} S=A+B \operatorname{Ln} Y
$$

Its income elasticity:

$$
E=B
$$

By $B\rangle O$ we have normal goods if $O\langle B<1$ commodity is necessity and if $1<B$ commodity is Iuxury Figure (14).

figure (14)

figure (15)

If $B<O$ commodity is an inferior one as showed at the figure (15). $\operatorname{MODEL}(H): \quad \operatorname{Ln} S=A+B / Y$
shape of this model is shown at the figures (15) \& (17). Its income elasticity:

$$
E=-B / Y=A-\operatorname{In} S
$$

If $\mathrm{B}\langle O$ and $A\rangle O$ the model shows normal goods, the income elasticity at the origin is infinity and declines to two till the inflexion point by coordinate of $S=e^{A-2} \& Y=B / 2$; then tends to one up to the point $S=e^{A-1} \& Y=B$; so the model is for Iuxuries when $Y<B$ or $S<e^{A-1}$; finally declines to zero when income is greater than B and tends to infinity; by this, S tends to a saturation level $S=e^{A}$ Figure (16).

When $E>0$ and $A>0$ model shows inferior goods with a minumum expenditure level $S=e^{A}$; when income is zero, expenditure is infinity, with an income elasticity equal to minus infinity, when income increases income elasticity tends to zero and expenditure tends to e^{A}, figure (17).

$$
\operatorname{MODEL}(I): \quad S=A+B Y^{3}
$$

shape of this model is shown at the figures (18) \& (19). Its income elasticity is:

$$
E=3(1-A / S)=3\left(1-A /\left(A+B Y^{3}\right)\right)
$$

If $B>0$ model is for normal goods, if $A>O$ it has minimum level of expenditure equal to $S=A$, the income elasticity at this point by $Y=0$ is zero, and tends to one up to the point $S=3 A / 2$ and $Y=(A / 2 B)^{1 / 3}$ so if $S\langle 3 A / 2$ commodity is necessity and if $S\rangle 3 A / 2$ commodity is luxury. The variation range of income elasticity in this case is between zero and three, $0 \leqslant z<3$.

If $A<O$ the income elasticity varies between infinity and three so the model is suitable for luxuries. Figure (18).

If $B<O$ so $A\rangle O$, model is for inferior goods, its income elasticity is zero at the point $S=A$ \& $Y=C$, and tends to minus infinity down to the point $S=0$ \& $Y=(-A / B)^{1 / 3}$, figure (19).

$$
\text { MODEL }(J): \quad S=A+B Y^{1 / 3}
$$

shape of this model is shown at the figures (20) \& (21).
Its income elasticity:

$$
E=(1 / 3)(1-A / S)=(1 / 3)\left(1-A /\left(A+B Y^{1 / 3}\right)\right)
$$

$B\rangle 0$ is for normal goods, if A>O model is suitable for commodities whose income elasticities are between zero and tierce or $0, \mathbb{E}\langle 1 / 3$; in this case income elasticity is zero at the point $\mathrm{Y}=0$ \& $S=A$, and tends to tierce by tending S or $=$ to infinity. If $A<O$ range of variation of income.elasticity is between infinity and tierce or $1 / 3\langle E \leqslant \infty$, income elasticity is infinity at the point

$S=0$ \& $Y=(-A / B)^{3}$ and declines to one down to the point $S=|-A / 2|$ and $Y=(3 A / 2 B)^{3}$ and then tends to tierce by increasing S or Y towards infinity,figure (20). If $B\langle O$ and $A\rangle O$, commodity is inferior. Income elasticity is zero at the point $S=A \& Y=0$ and declines to minus infinity down to the point $S=0$ \& $Y=(-A / B)^{3}$, figure (21).

$$
\operatorname{MODEL}(K): \quad S=A+B Y^{2 / 3}
$$

Shape of this model is shown at the figures (22) \& (23). Its income elasticity:
$\because \quad E=(2 / 3)(1-A / S)=(2 / 3)\left(1-A /\left(A+B Y^{2 / 3}\right)\right.$
B>O is for normal goods, for the commodities whose income elasticities are between zero and $2 / 3$, A should be positive; in this case income elasticity is zero at the point $S=A$ and $Y=0$, then tends to $2 / 3$ by tending Y or S to infinity. For commodities whose income elasticities are between infinity and $2 / 3$, A should be negative, $A<0$; in this case income elasticity is infinity at the point $S=0 \& Y=(-A / B)^{3 / 2}$, and declines to one down to the point $S=A \& Y=(-2 A / B)^{3 / 2}$, then tends $2 / 3$ by tending S or Y to infinity, figure (22). If $B\langle O$ and $A\rangle O$ model is for inferior goods, its income elasticity is zero at the point $S=A \& Y=0$ and tends to minus infinity down to the point $S=0$ \& $Y=(-A / B)^{3 / 2}$ figure (23).

Shape of this model is shown at the figures (24) \& (25). Its income elasticity is:

$$
E=(3 / 2)(1-A / S)=(3 / 2)\left(1-A /\left(A+B Y^{3 / 2}\right)\right)
$$

If $B>0$ model is for normal goods, by $A>0$, it is suitable for commodities whose income elasticities are between zero and $3 / 2$, or $0 \leqslant E\left\langle 3 / 2\right.$. If $S\left\langle 3 A\right.$ or $Y\left\langle(2 A / B)^{2 / 3}\right.$, the model is suitable for necessities, its income elasticity is zero at the point $S=A$ \& $Y=0$ and tends to one up to the point $S=3 A$ or $Y=(2 A / B)^{2 / 3}$, after that point model fits luxuries when $S\rangle 3 A$ or $Y>(2 A / B)^{2 / 3}$, its income elasticity tends to $3 / 2$, when S or Y tends to infinjty.

By $A<0$ model fits luxuries, income elasticity is infinity at the point $S=0$ \& $Y=(-A / B)^{2 / 3}$, and tends to $3 / 2$ when Y or S tends to infinity, figure (24).

If $B<O$ \& $A>O$ the model fits inferior goods, its income elasticity is zero at the point $S=A \& Y=0$ and declines to minus infinity down to the point $S=0 \& Y=(-A / B)^{2 / 3}$.

MODEL SELECTION AND THECRITICAL HYPCTHESIS

As a general division of the cited 12 models, we categorize them to, the groups of models:

Group (No.I)
includes models:
(E) $\quad S=A+B Y^{\frac{1}{2}}$
(J) $\quad S=A+B Y^{1 / 3}$
(K) $\quad S=A+B Y^{2 / 3}$
and model (B)
(B) $\quad S=A+B \operatorname{Ln} Y$

This group consists of upward convex models, or can be said that the signs of their second derivatives are negative:

$$
\begin{aligned}
& \frac{d S}{d Y}=m B Y^{m-1}>0 \\
& \frac{d^{2} S}{d Y^{2}}=m(m-1) B Y^{m-2}<0
\end{aligned}
$$

or for model (B):

$$
\begin{array}{ll}
\frac{d S}{d Y}=B / Y>0 & B>0 \text { for normal goods } \\
\frac{d^{2} S}{d Y^{2}}=-B /\left(Y^{2}\right)<0 &
\end{array}
$$

The first hypothesis is: upward convex Angel curves fit to
necessities better, beacuse $d^{2} S / C Y^{2}$ is less than zero and by increasing income the proportions allocated to necessities increase, but less than income increments; or on the other hand when a function is convex upward, the derivative of its slope is decreasing.

Group (No .II)
includes models:

$$
S=A+B Y^{m} \quad m>1 .
$$

(D) $\quad S=A+B V^{2}$
(I) $\quad \mathrm{S}=\mathrm{A}+\mathrm{BY}{ }^{3}$
(I) $\quad S=A+B Y^{3 / 2}$
and model(F)
(F) $\quad \operatorname{Ln} S=A+B Y$

This group consists of upward cocave models, or can be said that the signs of their second derivatives are positive:

$$
\begin{array}{ll}
\frac{d S}{d Y}=m B Y^{m-1}>0 \quad & \text { B>0 for normal goods } \\
\frac{d^{2} S}{d Y^{2}}=m(m-1) B Y^{m-2}>0
\end{array}
$$

or for the model (F) :

$$
\begin{aligned}
& S=a e^{B Y} \quad \text { (before transformation) } \\
& \frac{d S}{d Y}=a B e^{B Y}>0 \quad B>0 \text { for normal goods }
\end{aligned}
$$

$$
\frac{d^{2} S}{d Y^{2}}=a B^{2} e^{B Y}>0
$$

The sacond hypothesis is: upward concave Zngel curves fitt better to the luxuries, beacuse $\mathrm{d}^{2} \mathrm{~S} / \mathrm{d} Y^{2}$ is greater than zero, and by increasing income the proportions cevoted to Iuxuries increase more tren income; or on the other hand when a function is concave upward, tie derivtive of its slope is increasing. Group (No.III) (A) $S=A+B Y$

This model is linear and is suitable for bundles of commodities whose marginal propensity to consume is constant:

$$
\begin{aligned}
& \frac{d S}{d Y}=B \\
& \frac{d^{2} S}{d Y^{2}}=0
\end{aligned}
$$

The third hypothesis is: total non-food expenditure possesses this charachter, beacuse this bundle ismitiar Iuxury nor necessity; so according to the last hypotheses this curve is neither zoncave upward, nor convex upward, so by integrating back of $\left(d^{2} S / d Y^{2}\right)=0$, we must derive the suitable function.

$$
\int \frac{\mathrm{d}^{2} \mathrm{~S}}{\mathrm{dY} \mathrm{Y}^{2}} d \mathrm{Y}=\text { constant }
$$

or

$$
\begin{aligned}
& \frac{d S}{d Y}=\text { constant }=B \\
& \int \frac{d S}{d Y} d Y=B Y+\text { constant }=A+B Y=S
\end{aligned}
$$

which is the linear form.
When the exponent of $Y,(m)$ in the general form of the model : $S=A+B Y^{m} \quad(m>0)$, varies the shepe of tre model varies accordingly.

When $\mathrm{m}=0$, the curve is a horizontal line; by tending towards unity, shape of the curve is convex upward, the convexity ray increases towards infinity up to the point $m=1$, where the curve is astraight line; then upward convexity stops and upward concavity starts, by increasing m towards infinity. (Figure 26).

Group (I:o.IV)

$$
\text { - (C) } S=A+E / Y
$$

(H) $\quad \operatorname{LnS}=A+B / Y$
this's group are the models with a saturation level for normal goods; and minimum expenditure level for inferior goods.

When demand approaches saturation these models are suitable.

$$
\text { Group (No.V) (G) } \quad \operatorname{In} S=A+B \operatorname{Ln} Y
$$

or before transformation:

$$
S=a Y^{B} \quad A=\operatorname{In} a
$$

if $B<1$, commodity is necessity if $B>1$, commodity is luxury
Obviously cited conditions confirm the first and second hypotheses:

$$
\begin{aligned}
& \frac{d S}{d Y}=a B y^{B-1}>0 \\
& \frac{d^{2} S}{d y^{2}}=2 B(B-1) Y^{B-2}
\end{aligned}
$$

if $B<1 \rightarrow \frac{d^{2} S}{d Y^{2}}<0$, the curve is convex upward.
if $B>1 \rightarrow \frac{d^{2} S}{d Y^{2}} 0$, the curve is concave upward.

The purpose of this chapter is to gather information about the sample and the statistics derived from the Urban and Rural Household Budget Survey in the year 1356.

Household: Regarding the available results presented, certain comments should be made. The statistical unit referred to in the tables is a setteld household, defined as one or several persons sharing meals and expenditures and living together in a normal housing unit. Thus according to this definition tribal and nomadic population is excluded.

Rural and Urban: Rural areas are defined to be those centers containing population not exceeding 5000 inhabitants according to the last processed Census. Similarly, Urban areas are those centers having populations more than 5000 inhabitants.

Expenditure: By Expenditure it is meant the market value of goods and services purchased or acquired by the household during the specific sample period. In the tabulation expenditure is devided into two main categories: Food and Non-Food, and disaggregated into sixteen divisions.

Reference Period: The used reference period varies according to the type of information should be collected.

For Food data, information is asked on expenditure in the previous two cays, and Non-Food data, is asked in the last month. .

Method of collecting data: Completion of the questionnaire is based on direct interview with the primary sampling unit. In order to improve the accuracy of data, the methods of direct measurement of various quantities have also been taken into consideration.

Sample Design of the Urban Household Budeet Survey:
Statistical Populaticia:
The covered population consists of all urban household. Thus communal residente such as persons in prisons,armed forces bases, and similar institutions are excluded. Urban areas are defined to be those places that according to the 1355(Iranian calender year) census .. hád a population of 5000 or more.

Statistical Frame:
The frame consists of the complete list of all households enumerated in the 1355 sample survey of urban household consumption.

Me,thods of Sampling:
Two-stage sampling with stratification is the basis for the sampling procedure, the first stage is selection of
sample circuits in urban areas and the second is selection of sample households inside the circuits.

Determination of sample size:
Among all urzan circuits of each. Cstan (province),
5% to 6% of circuits were selected as sample circuits, then in each sampled. circuit for each seascn one block has been selected randomly (Somewhere the numbers of household in a block were few, two blocks have been choosen). Finally for each season, ten households have been selected às sampled householcs.

Estimation formulas:

The sample avcrage for each attribute in one ostan and the country is computed from the following formulas:

$$
\begin{aligned}
& \hat{\bar{x}}_{k}=\frac{\sum_{k=1}^{n_{k}} x_{k i}}{n_{k}} \\
& \hat{\bar{X}}=\frac{1}{n} \sum_{k=0}^{22} n_{k} \cdot \hat{\bar{x}}_{k}
\end{aligned}
$$

Where:

$\hat{\bar{X}}_{k}=$ Estimation of the average value of one attribute for an urban household in K th ostan.
$n_{k}=$ The sample size at the K th ostan.
$X_{k i}=$ The value of attribute in the Ith sampled household in the Kth ostan. $i=1,2, \ldots, i 0$
$\hat{\bar{X}}=$ Estimation of the average value of one attribute for an urban household in the country.
$n=$ The sample size of the survey for the country. Sample fesign of the Rural Household Budget Survey:
Note: The word "VIIIAGE", used in the following sections, will have a broader meaning as compared to its normal usage in the English language. In our context, "village" will be synonymous to the Persian word "ABADI" which has been defined in the "Preliminary Report of the Agricultural Survey 1352 (Iranian Calender Year), Statistical Center of Iran".

Statistical Population:
statistical population consists of all rural areas in the country for which the "village" questionnaires have been completed in the Agricultural Survey of 1352.

Statistical Frame:
The frame consists of all villages enumerated in the Priliminary Agricultural Survey of 1352 which included less than 5000 inhabitants.

Method of sampling:
Two-stage sampling with stratification is the basis for the sampling procedure, where in the first stage sampled - villages and in the second stage sampled households inside the sampled units of the first stage were selected.

Stratification:
The villages of each ostan were stratified into seven
strata as follows:
Stratum 1:villages having 1 to 10 households
Stratum 2:villages having 11 to 30 households
Stratum 3:villages having 31 to 50 households
Stratum 4:villages having 51 to 100 households
Stratum 5:villages having 101 to 200 households
Stratum 6: villages having 201 to 400 households
Stratum 7:villages having 401 or more households(up to 5000 inhabitants)

Determination of sample size:
On the basis of the previous experience, the sample size at 5% level of significance, 15,000 sempled households or nearly 3000 sampled villages are sufficient. The numbers of sampled villages for each ostan are based on the numbers of villages in each stratum and standard deviation of the household in each stratum among seven strata, systematics ("circular") sampling was used for each stratum.

Second stage sampling:
The numbers of samples at the second stage for seven strata are as follow:

$$
\begin{array}{llllllll}
\text { Village classification } & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\text { Numbers of households } & 2 & 3 & 4 & 4 & 6 & 8 & 10
\end{array}
$$

Estimation Formulas:

Estimation formulas for rural areas are as follow:

$$
\frac{\hat{\bar{x}}_{k}}{}=\frac{1}{\hat{\mu}_{k}} \sum_{h=1}^{7} \frac{N_{k h}}{n_{k h}} \sum_{i=1}^{n_{k h}} \frac{m_{k h i}}{m_{k h i}} \sum_{j=1}^{m_{k h i}} x_{k h i j}
$$

$$
\hat{X}_{k}=\hat{\mathbb{M}}_{k} \cdot \hat{X}_{k}=\sum_{h=1}^{7} \frac{N_{k h}}{n_{k h}} \sum_{i=1}^{n_{k h}} \frac{M_{k h i}}{m_{k h i}} \sum_{j=1}^{m_{k h i}} x_{k h i j}
$$

$$
\hat{x}=\sum_{k=0}^{22} \hat{X}_{k}
$$

$$
\hat{\bar{X}}=\frac{\hat{X}}{\hat{M}}
$$

$$
\hat{M}_{k}=\sum_{h=1}^{7} \frac{N_{k h}}{n_{k h}} \sum_{i=1}^{n_{k h}} M_{k h i}
$$

$$
\hat{\mathrm{M}}=\sum_{\mathrm{k}=0}^{22} \hat{\mathrm{M}}_{\mathrm{k}}
$$

Where:

$\mathrm{x}_{\text {khij }}$ is the attribute being measured for fth household from ith village in the hah stratum from kith ostan.
$m_{k h i}$ is the number of households, in the sample, from ith village in the heth stratum from eth ostan.
$M_{k h i}$ is the total number of households from ith village in th stratum from kith ostan.
$n_{k h}$ is the number of villages in the sample, from nth stratum in eth ostan.
$N_{k h}$ is the total number of villages from heth stratum of k th ostan.
\hat{M}_{k} is the estimator for the total number of rural households in the eth ostan.
$\hat{\bar{X}}_{k}$ is the estimator for the average of the attribute being studied for k th ostan.
$\hat{\mathrm{x}}_{k}$ is the estimator for the total of the attribute being studied for eth octan.
$\hat{\mathrm{X}}$ is the estimator for the total of the attribute being studied for all rural areas.
\hat{n}
\hat{M} is the estimator for the total number of the hóuseholés.
$\hat{\bar{X}} \quad$ is the estimator for the mean of the attribute being studied for a typical rural household.
i is the subscript for village.
j is the subscript for household.
h is the subscript for classification of village.
k is the subscript for ostan.

III
IV

FOTAL	13588	67260	100.0	100.0
FAMILY SIZE $=1$	764	764	5.6	1.1
FAMILY SIZE $=2$	1404	2808	10.3	4.2
FAMILY SIZE $=3$	1733	5199	12.8	7.7
FANILY SIZE $=4$	2261	9044	16.6	13.5
FAMIIY SIZE $=5$	2185	10925	16.1	16.2
FAMIIY SIZE $=6$	1894	11364	13.9	16.9
FAMIIY SIZE $=7$	1495	10465	11.0	15.6
FAMIIY SIZE $=8$	920	7360	6.8	10.9
FEMIIY SIZE $=9$	503	4527	3.7	6.7
FAMILY SIZE $\geqslant 10$	429.	4804	3.2	7.1

TABIE 1. (URBAN) NUMBERS AND DISTRIBUTION OF HOUSEHOID AND THE HOUSEHOLD PERSONS IN THE 1356 SAMPLE BY FANILY SIZE.
I. NUMBERS OF HOUSEHOLD IN THE SAMPIE.
II. NUNBERS OF HCUSEHOID PERSONS IN THE SAMPLE.
III. PERCENTAGE DISTRIBUTION OF HOUSEHOLD IN THE SAMPIE. IV.PERCENTAGE DISTRIBUTION OF HOUSEHOLD PERSONS IN THE SAMPIE.
∇
Source:Statistical results of urban household budget year 1356 . SCI.

III
IV

FOTAI	14873	79045	100.0	100.0
FAMILY SIZE $=1$	623	623	4.2	0.8
FAMILY SIZE $=2$	1490	2980	10.0	3.8
FAMIIY SIZE $=3$	1677	5031	11.3	6.4
FAMILY SIZE $=4$	2113	8452	14.2	10.7
FAMILY SIZE $=5$	2263	11315	15.2	14.3
FAMILY SIZE $=6$	2156	11954	14.5	16.4
FAMIIY SIZE $=7$	1792	12544	12.1	15.9
FAMIIY SIZE $=8$	1340	10720	9.0	13.6
FAMIIY SIZE $=9$	703	6327	4.7	8.0
FAMIIY SIZE $\geqslant 10$	713	8099	4.8	10.3

TABLE 2. (RURAL) NUNBERS AND DISTRIBUTION OF HOUSEHOLD AND THE HOUSEHOLD PERSONS IN THE 1356 SANPIE BY FANILY SIZE.
I. NUMBERS OF FOUSEHOID IN THE SAMPLE.
II.NUNBERS OF HOUSEHOID PERSONS IN THE SAMPLE.
III.PERCENTAGE DISTRIBUIION OF HCUSEHOLD IN THE SAMPIE. IV.PERCENTAGE LISTRIBUIION OF HCUSEHOLD PERSCNS IN THE SAMPIE.
∇
Source:Statistical results of rural household budget year 1356. SCI.

	I	II	III	IV
TOTAI	13588	67260	100.0	100.0
LESS THAN 2500	230	494	1.7	0.7
2500 TO 4999	529	1629	3.9	2.4
5000 TO 7499	753	2733	5.5	4.1
7500 TO 9999	897	3635	6.6	5.4
10000 TC 14999	1915	8801	14.1	13.1
15000 IC 19999	1668	8181	12.3	12.2
20000 TO 29999	2465	13209	18.1	19.6
30000 TO 49999	2613	14533	19.2	21.6
50000 TC 99990	1741	9748	12.8	14.5
100000 \& MORE	777	4297	5.7	6.4

TABIE 3. (URBAN) NUMBERS AND DISTRIBUTION OF HOUSEHOLD AND HOUSEHCLD PERSONS IN THE 1356 SANPLE BY SSPARATED EXPENDITURE GROUPS/monthly,rial.
I. NUNEERS OF HOUSEHOID IN THE SANPLE.
II. NUMBERS OF HCUSEHCID PERSONS IN THE SAMPIE.
III. PERCENTAGE DISTRIBUTION CF HCUSEHOLD IN THE SANPIE. ¿V.PERCENTAGE DISTRIBUTION OF HCUSSHCID PERSONS IN TEE SAMPIE.

Source:Statistical results of vrban household budget year 1.356 . SCI.

TOTAI	14873	79045	100.0	100.0
IESS THAN 2500	471	818	3.2	1.0
2500 TO 4999	1428	4470	9.6	5.7
5000 TO 7499	2135	9137	14.4	11.6
7500 TO 9999	2112	10456	14.2	13.2
10000 TO 14999	3342	18570	22.5	23.5
15000 TO 19999	2010	12461	13.5	15.8
20000 TO 29999	1811	11841	12.2	15.0
30000 TO 49999	1010	7300	6.8	9.3
50000 TO 999.39	443	3211	3.0	4.1
100000 \& MCRE	111	781	0.8	1.0

TABIE 4. (RURAI) NUYBERS AND DISTRIBUTION CF HCUSBHCID AND HOUSEHOID PERSCNS IN THE 1356 SANPIE BY SEPARAMBD EXPENDITURE GROUPS/monthly,rial.
I. NUMEERS CF HCUSEHOID IN THE SANPIE.
II.NUNBERS CF HOUSEHOLD PERSCNS IN THE SANPIE.
III. PERCENTAGE DISTRIBUTION OF HOUSEHOID IN THE SAMPLE. Iv. PERCENTAGE DISTRIBUTION CF HOUSEHCLD PERSONS IN THE SAMPIE.

Source:Statistical results of urban household budget year 1 1356. SCI.

```
NHADMZR VI. RESUIMS & DIEOUSSICN
```

The following tables are the estimated Engel curves and the respected means and standard deviations, and correlation coefficients matrices, of the variables, for the UPBAR \& RURAI fagns of Iran. At the Engel curves tables, the first column which consists of: (A),(B),...,(L), are representatives of the econometric models. Other columns sequently are:constant 'a'; slope 'b'; general significant test of the model 'F';'R' square; and Durbin-Watson test 'D.W.'.
NATM RABIES

Variable	Mean	Standard Dev.
S10	24332.0361	47893.1684
S20	12224.2154	14917.1706
S02	2714.3033	5342.3292
S03	11897.9193	21165.4336
S04	3079.7001	17917.5512
S05	1011.4291	6359.0850
S06	2990.3634	23886.3758
S07	527.2496	2770.5235
S08	2111.0713	16961.0648
S11	2448.3560	7442.1319
S12	3253.5140	4684.8711
S13	1218.4892	1677.5004
S14	589.5879	3547.6710
S15	2572.4756	3780.0329
S16	239.8468	1311.1661
S17	964.6345	2989.8970
S18	99.0582	541.7069
S19	838.2532	3114.8937
Y	36556.2515	53983.9563

TABIE(5) URBAN Mean and Standard Deviation of the Variables

Variable	Mean	Standard Dev.
S10	8307.5455	21345.8183
S20	8214.4913	6907.3025
S02	1947.9971	6218.5367
S03	1864.8421	4873.8806
S04	1845.1911	12418.2878
S05	629.6572	3212.8205
S06	712.7082	7162.0190
S07	194.5532	5019.4734
S08	1112.5967	7405.0910
S11	2643.4292	2062.9783
S12	1965.2456	3732.9407
S13	1090.9727	1320.4672
S14	402.7095	893.6992
S15	858.7643	1417.4871
S16	214.1421	453.3262
S17	654.5953	804.1256
S18	22.0510	70.6248
S	362.5824	8748.7001

TABLE (6) RURAL Mean and Standard Deviation of the Variables

	S10	S20	SC2	S03	SO4	
S10	1.00000	0.27854	0.35456			
S20	0.27854	1.00000	0.30188		0.52346	0.21135
S02	0.35456	0.30188	. 00000		0.14904	0.07562
SO3	0.56351	0.22026	. 1691		0.15347	0.06439
SO4	0.52346	0.14904	. 1534		0.09149	0.05347
S05	0.21135	0.07562	0.		1.00000	0.02261
S06	0.59531	0.09639	0.11421		0.02261	1.00000
S07	0.22111	0.13137	0.12617		0.04019	0.04261
S08	0.50211	0.07355	0.10734	0.04801	0.07651	0.03462 0.04533
S11	0.04913	0.63415	0.07216	0.04707	0.03677	
S12	0.26997	0.62572	0.25031	0.22473	0.12968	
S13	0.20817	0.48212	0.25123	0.17644	0.00716	
S14	0.05049	0.39005	0.06580	0.03238	0.02304	
S15	0.25214	0.56481	0.26587	0.23302	0.11409	
S16	0.07695	0.33008	0.13649	0.04860	0.07498	. 0
S17	0.11781	0.44783	0.16921	0.06071	0.08008	. 0
S18	0.07260	0.22268	0.07808	0.05254	0.02955	. 065
S19	0.17679	0.33593	0.13053	0.10180	0.09926	0.03015
I	0.96414	0.52344	0.39797	0.56080	0.50559	0.20840

TABIE (7) URBAN Correlation Coefficients Matrix

S06
0.59531

S10
S20
SO2
SO3
S04
S05
S06
S07
S08
S11
S12
S13
S14
S15
S16
S17
S18
S19
Y :
0.55478
0.23247
0.46578

S12
S13

0.59531	0.22111	0.50211	0.04913	0.26997	0.20817
0.09639	0.13137	0.07355	0.63415	0.62572	0.48212
0.11421	0.12617	0.10734	0.07216	0.25031	0.25123
0.07630	0.10936	0.04801	0.04707	0.22473	0.17644
0.04019	0.07651	0.18164	0.03677	0.12968	0.09716
0.04261	0.03462	0.04533	0.01617	0.04904	0.05014
1.00000	0.07164	0.07136	0.00385	0.10425	0.08027
0.07164	1.00000	0.09012	0.00852	0.13438	0.08556
0.07136	0.09012	1.00000	0.00553	0.07889	0.04004
0.00385	0.00852	0.00553	1.00000	0.13117	0.12363
0.10425	0.13438	0.07889	0.13117	1.00000	0.36902
0.08027	0.08556	0.04004	0.12363	0.36902	1.00000
0.02195	0.00637	0.00812	0.09499	0.09763	0.14473
0.08993	0.09524	0.05357	0.07966	0.37420	0.35453
0.01377	0.03037	0.00700	0.10627	0.16888	0.13709
0.04260	0.03499	0.02921	0.11614	0.17595	0.17073
0.03294	0.02474	0.01123	0.06040	0.12472	0.11080
0.06586	0.18707	0.09159	0.01230	0.15345	0.08400
0.55478	0.23247	0.46578	0.21882	0.41241	0.31790

TABIE (7.) Continued

S14
S15
S16
S17
S18
S19
S10
0.05049
0.25214
0.07695
0.11781
0.07260
0.17679

S20
0.39005
0.56481
0.33008
0.44783
0.22268
$0.33 う 93$
SO2 0.06580
SO3 0.03238
0.26587
0.23302

SO4 0.02394
0.11409

S05
S06
S07
S08
S11
0.04291
0.05640
0.04860
0.16921
0.06071
0.07808
0.13053
0.06071
0.08008
0.05254
0.10180
0.02195
0.08993
0.00637
0.09524
0.00812
0.05357
0.07498
$\begin{array}{ll}0.08008 & 0.02955 \\ 0.06423 & 0.05860\end{array}$
0.09926
0.09499
0.07966
0.09763
0.37420
$0.14473 \quad 0.35453$
0.16888
0.13709
$1.00000 \quad 0.08930$
0.07483
0.18422
$\begin{array}{ll}0.08930 & 1.00000 \\ 0.07483 & 0.18422\end{array}$
0.18422
1.00000
$0.12855 \quad 0.19386$
0.17479
0.16654
$0.00602 \quad 0.15679$
0.07238
0.15948
$\begin{array}{lll}\mathrm{Y} & 0.15258 \quad 0.37977\end{array}$
0.01377
0.03037
$0.04260 \quad 0.03294$
0.03015
$0.03499 \quad 0.02474$
0.06586
0.02921
0.11614
0.01123
0.18707
0.00700
0.10627
$\begin{array}{ll}0.17595 & 0.12472\end{array}$
0.09159

S12
S13
S14
S15
S16
S17
S18
Si9
0.17073
0.12855
0.11080
0.01230
0.19386
$0.04602 \quad 0.00602$
$0.19386 \quad 0.14469 \quad 0.15679$
$0.17497 \quad 0.16654 \quad 0.07238$
1.00000
0.15310
0.06880
0.15310
.1 .00000
0.06880
0.05590
0.22826
0.12594
0.24967

TABLE (7) Continued

	Y
S10	0.96414
S20	0.52344
S02	0.39797
S03	0.56080
S04	0.50559
S05	0.20840
S06	0.55478
S07	0.23247
S08	0.46578
S11	0.21882
S12	0.41241
S13	0.31790
S14	0.15258
S15	0.37977
S16	0.15948
S17	0.22826
S18	0.12594
S19	0.24967
Y	1.00000

TABLE (7) Continue d

	S10	S20	SO2	SO3	SO4	SO5
S10	1.00000	0.20566	0.43135	0.31660	0.68397	0.21051
S20	0.20566	1.00000	0.17294	0.14582	0.00404	0.07574
S02	0.43135	0.17294	1.00000	0.05485	0.09935	0.05272
S03	0.31660	0.14582	0.05485	1.00000	0.03912	0.03916
S04	0.68397	0.09404	0.09935	0.03912	1.00000	0.02625
S05	0.21051	0.07574	0.05272	0.03916	0.02625	1.00000
S06	0.39754	0.05621	0.03574	0.04734	0.02759	0.02651
S07	0.31840	0.02581	0.03119	0.61630	0.09733	0.01895
S08	0.47331	0.08920	0.12235	0.06895	0.08139	0.02040
S11	0.15140	0.66410	0.14828	0.12189	0.05500	0.06397
S12	0.11571	0.79156	0.09607	0.08309	0.05639	0.04257
S13	0.12886	0.46600	0.10494	0.06610	0.07532	0.04021
S14	0.09232	0.40443	0.07656	0.03224	0.05176	0.01679
S15	0.14666	0.50885	0.10250	0.11940	0.06085	0.06640
S16	0.08894	0.28786	0.06144	0.06799	0.03105	0.02506
S17	0.09370	0.58306	0.09128	0.06700	0.04055	0.03012
S18	0.07888	0.14860	0.01989	0.06768	0.03308	0.00591
S19	0.10769	0.31049	0.08490	0.08001	0.05046	0.03809
Y	0.95864	0.47570	0.43801	0.32697	0.64212	0.21124

TABIE (8) RURAL Correlation Coefficients Matrix

	S06	S07	S08	S11	S12	S13
S10	0.39754	0.31840	0.47331	0.15104	0.11571	0.12886
S20	0.05621	0.02581	0.08920	0.66410	0.79156	0.46600
S02	0.03574	0.03119	0.12235	0.14828	0.09607	0.10494
S03	0.04734	0.01630	0.06895	0.12189	0.08309	0.06610
S04	0.02759	0.09733	0.08139	0.05500	0.05639	0.07532
S05	0.02651	0.01895	0.02040	0.06397	0.04257	0.04021
S06	1.00000	0.00638	0.05549	0.03294	0.02871	0.03701
507	0.00638	1.00000	0.02544	0.02767	0.01416	0.01378
S08	0.05549	0.02544	1.00000	0.06002	0.04780	0.05092
S11	0.03294	0.02767	0.06002	1.00000	0.25685	0.31095
S12.	0.02871	0.01416	0.04780	0.25685	1.00000	0.16006
S13	0.03701	0.01378	0.05092	0.31095	0.16006	1.00000
S14	0.02423	0.0058 ?	0.05909	0.31467	0.14164	0.15776
S15	0.05419	0.01140	0.06711°	0.27805	0.23007	0.16071
S16	0.02016	0.03645	0.05250	0.18220	0.16537	0.06655
S17	C. 02195	0.00730	0.04209	0.34641	0.41915	0.23553
S18	0.07169	0.00591	0.03475	0.09104	0.10929	0.01110
S19	0.03836	0.00669	0.04369	0.12648	0.13673	0.07937
Y	0.37366	0.29369	0.45137	0.32891	0.33423	0.25136

TABLE (8) Continued

	S14	S15	S16	S17	$S 18$	$S 19$
S10	0.02232	0.14666	0.08894	$0.0937 C$	0.07888	0.10769
S20	0.40443	0.50885	0.28786	0.58306	0.14860	0.31049
S02	0.07656	0.10250	0.06144	0.09128	0.01089	0.08490
S03	0.03224	0.11940	0.06799	0.06700	0.06768	0.08001
S04	0.05176	0.06085	0.03105	0.04055	0.03308	0.05046
S05	0.01679	0.06640	0.02596	0.03012	0.00591	0.03809
S06	0.02423	0.05419	0.02016	0.02195	0.07169	0.03836
S07	0.00589	0.01140	0.03645	0.00730	0.00501	0.00669
S08	0.05909	0.06711	0.05250	0.04209	0.03475	0.04369
S11	0.31467	0.17805	0.18220	0.34641	0.09104	0.12648
S12	0.14164	0.23007	0.16537	0.41915	0.10929	0.13673
S13	0.15776	0.16071	0.06655	0.23553	0.01110	0.07937
S14	1.00000	0.13485	0.08117	0.26515	0.05729	0.07732
S15	0.13485	$1.00 c 00$	0.15169	0.17190	0.10962	0.13273
S16	0.08117	0.15169	1.00000	0.11220	0.10083	0.07809
S17	0.26515	0.17190	0.11220	1.00000	0.06240	0.10070
S18	0.05729	0.10962	0.10083	0.06240	1.00000	0.04847
S19	0.07732	0.13273	0.07809	0.10970	0.04847	1.00000
Y	0.20060	0.27982	0.16366	0.25380	0.11412	0.18710

TABIE (8) Continued

Y

S10	0.95846
S20	0.47570
S02	0.43801
S03	0.32697
S04	0.64212
S05	0.21124
S06	0.37366
S07	0.29369
S08	0.45137
S11	0.32891
S12	0.33423
S13	0.25136
S14	0.20060
S15	0.27982
S16	0.16366
S17	0.25380
S18	0.11412
S19	0.18710
Y	1.00000

TABLE (8) Continued

TABLE (9) URBAN S20 Total Food Engel Curve Estimation.

Model	a	b	F	R^{2}	D.W.
(A)	-6936.75282	0.85536	178358.585	0.930	1.838
(B)	-261876.53694	28536.45473	7058.838	0.343	1.879
(C)	29283.23684	-68396943.36370	481.705	0.034	1.738
(D)	19615.16953	0.00000	29793.556	0.688	1.534
(E)	-50776.35085	443.74441	28565.357	0.679	1.852
(F)	8.05798	0.00001	9612.117	0.416	1.500
(G)	-1.02315	1.04449	62026.132	0.821	1.743
(H)	9.78693	-4617.24826	5259.929	0.280	1.439
(I)	23057.10816	0.00000	8617.478	0.389	1.589
(J)	-84154.62903	3638.25065	17457.370	0.564	1.875
(K)	-31443.43703	56.52158	50149.751	0.788	-
(I)	12437.08987	0.00113	96502.068	0.877	-

TABLE (11) URBAN SO2 Clothing Eng el Curve Estimation.

TABLE (12) URBAN SO3 Housing Engel Curve Estimation.

Model
a
b
$\mathrm{F} \quad \mathrm{R}^{2}$
D.W.
(A)
-3054.71606
$\begin{array}{llll}0.16781 & 4640.712 & 0.256 & 1.944\end{array}$
(B) $\quad-46355.16001$
$4928.90772 \quad 1066.346 \quad 0.073 \quad 1.943$
(C) $\quad 3809.25337 \quad-10078205.04967 \quad 72.540 \quad 0.005 .1 .932$
(D) 1977.84057
$0.00000 \quad 4953.339 \quad 0.268$
1.945
(E) -10803.53648 $82.02291 \quad 2684.325 \quad 0.166 \quad 1.031$
(F)
5.83720
0.00001
$2931.437 \quad 0.178 \quad 1.776$
(G) $\quad-0.23746$
$\begin{array}{llll}0.95022 & 7073.785 & 0.344 & 1.774\end{array}$
(B)
6.60630
-4330.31787
$1923.465 \quad 0.125$ 1.749
(I) 2699.69270 $\begin{array}{llll}0.00000 & 4436.614 & 0.247 & 1.921\end{array}$
(J) $\quad-16559.55868$ $\begin{array}{llll}658.62976 & 2054.752 & 0.132 & 1.935\end{array}$
(i) $\quad-7435.97619$
10.65634
3379.709
0.200
-
(1)
567.55606
0.00024
5343.309
0.280
,

Model	a	b	F	B^{2}	D.W.
(A)	114.01436	0.02455	613.580	0.043	1.983
(B)	-9407.78830	1038.84913	357.796	0.026	1.984
(C)	1205.96548	-2687366.77486	40.853	0.003	1.981
(D)	929.71091	0.00000	160.158	0.012	1.950
(E)	-1499.65635	14.83563	607.806	0.043	1.980
(F)	3.48740	0.90001	504.901	0.036	1.778
(G)	-5.99174	0.98390	1537.415	0.102	1.794
(H)	4.22870	-4867.60407	616.860	0.044	1.788
(I)	999.67359	0.00000	25.424	0.002	1.978
(J)	-2743.64301	125.93155	538.278	0.038	1.981
(K)	-775.81897	1.81116	649.828	0.046	-
(I)	738.99660	0.00003	362.161	0.026	-

TABLE (14) URBAN 505 Health \& Medical Care Engel Curve Estimation.

Nodel	a	b	F	R^{2}	D.W.
(A)	-5983.28787	0.24548	6008.766	0.308	1.940
(B)	-54129.37532	5695.12933	785.629	0.054	1.996
(C)	3718.52076	-10058920.86105	40.565	0.003	1.989
(D)	1541.41066	0.00000	4772.369	0.261	1.998
(E)	-15351.07119	108.36219	2626.836	0.163	1.960
(F)	5.10195	0.00002	2088.279	0.134	1.466
(G)	-9.05849	1.47655	5994.740	0.307	1.582
(H)	6.27754	-7278.12624	2025.835	0.130	1.468
(I)	2668.81932	0.00000	1494.376	0.100	1.989
(J)	-21812.81271	831.80888	1815.778	0.118	1.976
(K)	-11490.75309	14.67483	3667.840	0.213	-
(L)	-696.91431	0.00035	6926.308	0.339	-

TABLE (15) URBAN S06 Transport \& Communications Engél Curve Estimation.

TABLE (16) URBAN SO7 Entertainment Engel Curve Estimation.

Model
a
b
$\mathrm{F} \quad \mathrm{R}^{2}$
D.W.
(A) $\quad-3238.70325$
$\begin{array}{llll}0.14634 & 3744.280 & 0.217 & 1.935\end{array}$
(B) $\quad-31885.7581$
$\begin{array}{llll}3389.65732 & 542.590 & 0.039 & 1.969\end{array}$
(C) $\quad 2580.82819 \quad-6489321.63661$
$33.467 \quad 0.002 \cdot 1.975$
(D) 1054.41237
$\begin{array}{llll}0.00000 & 5132.996 & 0.275 & 1.992\end{array}$
(E) $\quad-8559.97647$
$63.04513 \quad 1657.602 \quad 0.109 \quad 1.943$
(F)
5.76339
0.00001
$1462.568 \quad 0.098$
1.770
(G) $\quad-1.26275$
0.73490
$\begin{array}{lll}3312.390 & 0.197 & 1.752\end{array}$
(H)
6.37263

-3656.00353	1256.546	0.085	1.776

(I) 1780.92643
$\begin{array}{llll}0.00000 & 3553.109 & 0.208 & 1.987\end{array}$
(J) $\quad-12368.14608$
485.58062
$1176.033 \quad 0.080 \quad 1.953$
(K) $\quad-6331.42077$
8.55543
0.00023
2271.6090 .144 .
(L) $\quad-266.29366$
0.00023
$5239.185 \quad 0.279$

TABIE (17) URBAN S08 Personal Services Eng el Curve Estimation.

Model	a	b	F	R^{2}	D.W.
(A)	1345.60923	0.03017	679.604	0.048	1.940
(B)	-16791.51163	1918.31295	927.337	0.064	1.934
(C)	2872.07077	-5853285.97360	142.563	0.010	1.950
(D)	2394.84721	0.00000	49.732	0.004	1.947
(E)	-1467.92427	23.13760	1118.434	0.076	1.927
(F)	6.03862	0.00001	279.296	0.020	1.545
(G)	-1.54953	0.78030	1443.051	0.097	1.538
(H)	6.62636	-4832.29855	933.797	0.065	1.568
(I)	2444.78373	0.00000	1.711	0.000	1.948
(J)	-3794.82608	209.37376	1132.290	0.077	1.926
(K)	-145.65542	2.62871	1026.008	0.071	-
(I)	2199.43651	0.00002	218.461	0.016	-

TABLE (18) URBAN S11 Farinaceous Eng el Curve Estimation.

Nodel	a	b	F	R^{2}	D.'W.
(A)	1945.16139	0.03579	2769.552	0.170	1.926
(B)	-19594.03242	2278.01693	4002.747	0.229	1.933
(c)	3818.59586	-7806161.55432	664.299	0.047	1.833
(D)	3152.99302	0.00000	456.161	0.033	1.815
(E)	-1232.98427	26.50647	4580.419	0.253	1.957
(F)	5.10831	0.00001	605.642	0.043	1.785
(G)	-9.83505	1.54304	2563.207	0.159	1.773
(H)	6.24755	-8377.17913	1207.941	0.082	1.789
(I)	3235.13534	0.00000	115.252	0.008	1.796
(J)	-3945.33882	241.42350	4732.987	0.259	1.953
(K)	277.95539	3.01536	4135.292	0.234	-
(L)	2908.52402	0.00003	1129.160	0.077	-

TABIE (19) S12 Meat \& Fish Engel Curve Estimation. URBAN.

Model	a	b	F	R^{2}	D.W.
(A)	857.36632	0.00988	1519.306	0.101	1.831
(B)	-5982.81160	718.00642	2907.586	0.177	1.860
(C)	1410.04995	-2646261.16473	592.402	0.042	1.784
(D)	1196.59068	0.00000	165.336	0.012	1.752
(E)	-118.72153	7.90031	2874.437	0.175	1.868
(F)	4.75144	0.00001	583.300	0.041	1.705
(G)	-6.89932	1.20526	2184.966	0.139	1.755
(H)	5.65091	-6381.94941	988.156	0.068	1.728
(I)	1215.45179	0.00000	24.389	0.001	1.743
(J)	-971.39021	73.44064	3112.671	0.187	1.869
(K)	351.58136	0.87850	2481.103	0.155	-
(I)	1132.80637	0.00001	520.676	0.037	-

Model

FABIE (21) URBAN S14 Edible Oils Eng el Curve Estimation.

Model	a	b	F	R^{2}	D.W.
(A)	1600.38003	0.02659	2277.487	0.144	1.820
(B)	-15463.33828	1798.26265	3783.397	0.219	1.859
(C)	3020.77202	-6192862.67675	641.160	0.045	1.739
(D)	2510.48486	0.00000	262.790	0.019	1.703
(E)	-905.32945	20.54706	4120.170	0.234	1.871
(F)	5.60844	0.00000	768.132	0.054	1.575
(G)	-8.52065	1.45829	3491.079	0.205	1.637
(H)	6.69757	-8181.23815	1718.332	0.113	1.629
(I)	2563.41122	0.00000	42.834	0.003	1.686
(J)	-3053.28842	188.66779	4345.688	0.243	1.873
(K)	290.64659	2.32235	3628.068	0.212	-
(I)	2335.27265	0.00002	801.608	0.056	-

Model

(A)	8.24910	0.00387	352.676	0.025	1.952
(B)	-1949.44118	218.28318	371.952	0.027	1.954
(C)	286.81369	-648809.09879	56.074	$0.004{ }^{\text {. }}$	1.946
(D)	229.49303	0.00000	60.033	0.004	1.942
(E)	-222.10569	2.72924	479.452	0.034	1.954
(P)	0.71001	0.00000	157.883	0.012	1.758
(G)	-3.12574	0.39947	389.582	0.028	1.763
(H)	$1.00380^{\prime \prime}$	-1700.06713	120.828	0.009	1.761
(I)	238.23899	0.00000	11.176	0.001	1.941
(J)	-484.86749	24.30430	469.289	0.034	1.954
(K)	-72.79192	0.31682	461.503	0.033	-
(L)	202.39750	0.00000	158.6090	0.012	-

TABIE (23) URBAN S16 Nut \& Seed Engel Curve Estimation.

Model	a	b	F	R^{2}	D.W.
(A)	502.47685	0.01264	742.844	0.052	1.873
(B)	-6144.59904	708.82685	776.235	0.054	1.864
(C)	1131.65250	-2307222.17484	137.182	0.010	1.865
(D)	926.14661	0.00000	160.714	0.012	1.865
(E)	-509.44931	8.70897	971.892	0.067	1.866
(F)	2.28203	0.00001	152.690	0.011	1.740
(G)	-4.22687	0.67427	485.470	0.035	1.729
(H)	2.78418	-3431.06759	219.997	0.016	1.736
(I)	958.36240	0.00000	32.756	0.002	1.863
(J)	-1352.14793	77.69651	954.308	0.066	1.864
(K)	-35.71240	1.01373	939.737	0.065	-
(I)	834.83946	0.00001	372.124	0.027	-

Model

TABIE (25) URBAN S18 Sauce \& Taste \& Remainder Foods Angel Curve Estimation.

Model	a	b	F	R^{2}	D.W.
(A)	311.61529	0.01441	898.423	0.062	1.818
(B)	-5883.95161	650.29709	594.289	0.042	1.805
(C)	974.99858	-1889030.05680	84.399	0.006	1.780
(D)	777.49699	0.00000	375.397	0.027	1.784
(E)	-650.56862	8.79604	909.517	0.063	1.819
(F)	3.01727	0.00001	325.079	0.023	1.740
(G)	-5.02307	0.83719	824.079	0.057	1.746
(H)	3.66585	-4037.67384	323.007	0.023	1.731
(I)	824.66591	0.00000	142.782	0.010	1.775
(J)	-1422.73067	78.82523	830.230	0.058	1.815
(K)	-210.15953	1.06244	951.828	0.066	-
(I)	665.94768	0.00002	614.780	0.044	-

Model	a	b	P	R^{2}	D.W.
(A)	5928.54287	0.13836	4369.900	0.226	1.789
(B)	-38656.21294	5012.14239	9604.080	0.391	1.869
(C)	10557.55522	-19454151.47657	2863.498	0.161	1.807
(D)	8146.29671	0.00000	268.040	0.018	1.707
(E)	-1597.65595	83.85571	10693.227	0.417	1.854
(F)	8.47485	0.00001	1460.725	0.089	1.606
(G)	0.87513	0.52135	12875.805	0.463	1.544
(E)	9.28751	-4835.05767	9378.740	0.386	1.619
(I)	8205.93866	0.00000	32.938	0.002	1.705
(J)	-7924.49319	687.63144	11773.839	0.441	1.860
(K)	1984.21029	10.46533	8744.443	0.369	-
(L)	7844.28582	0.00012	1052.019	0.066	-

TABIE (27) RURAL Total Food Engel Curve Estimation. S20.

Model
a

$$
\begin{array}{llll}
b & F & R^{2} \quad \text { D.W. }
\end{array}
$$

TABLE (29) RURAL SO2 Clothing Eng el Curve Estimation.

TABIE (30) RURAL SO3 Housing Engel Curve Estimation.

Model
b
F
R^{2}
D.W.
(A) $\quad-3702.35342$
$\begin{array}{llll}0.33577 & 10482.543 & 0.412 & 1.957\end{array}$
(B) -33446.55970
(C) 2784.69364
3773.94102
1100.998
0.069
1.981
$-7800572.21108 \quad 20.492 \quad 0.008 .1 .978$
(D) $\quad 1191.17391$
0.00000
$15005.402 \quad 0.501$
1.967
(E) $\quad-10525.84441$
(F)
5.46489
(G) $\quad-4.41777$
(i) $\quad 6.48409$

-4632.33742	3366.080	0.184	1.674
0.00000	13572.953	0.476	1.951

(I) 1618.94904
0.00000 13572.953
. 951
(J) $\quad-15033.13038$
(K) $\quad-7785.45766$
(L)
3.44593
$719.13219 \quad 2618.674 \quad 0.149 \quad 1.964$
$16.17710 \quad 5608.398 \quad 0.273$ -
$0.00061 \quad 15162.649$
0.504

TABIE (31) RURAL SO4 Furniture Engel Curve Estimation.

Model	a	b	F	R^{2}	D.W.
(A)	157.49310	0.02858	697.864	0.045	1.987
(B)	-6337.41466	745.02732	621.904	0.040	1.988
(C)	896.54850	-2215964.75972	145.513	0.010	1.980
(D)	611.63306	0.00000	85.389	0.006	1.975
(E)	-1091.64559	14.71044	942.462	0.059	1.988
(F)	2.33557	0.00003	718.443	0.046	1.649
(G)	-9.04548	1.26589	2168.194	0.127	1.687
(H)	3.43741	-5355.78325	985.712	0.062	1.651
(I)	527.05831	0.00000	14.034	0.001	1.974
(J)	-2050.64812	114.19938	889.444	0.056	1.988
(K)	-524.98774	1.93952	930.222	0.059	-
(I)	541.37729	0.00003	262.860	0.017	-

TABIE (32) S05 Health \& Medical Care Engel Curve Estimation.

Model
a
b
$\mathrm{F} \quad \mathrm{R}^{2}$
D.W.

(A)	-1149.11453	0.11269	2424.651	0.140	1.970
(B)	-11532.64827	1309.46332	380.611	0.025	1.979
(C)	1043.31648	-2744999.44809	44.632	0.003	1.983
(D)	557.22253	0.00000	1390.545	0.085	1.982
(E)	-3621.61388	37.04159	1223.826	0.076	1.966
(F)	3.41702	0.00003	1218.445	0.075	1.500
(G)	-10.79204	1.57964	4059.257	0.214	1.543
(H)	4.83925	-7135.71471	2017.077	0.119	1.503
(I)	680.32368	0.00000	451.337	0.029	1.982
(J)	-5195.52962	251.73143	868.549	0.055	1.970
(K)	-2644.02360	5.63848	1654.238	0.100	-
(I)	173.16889	0.00018	2231.690	0.130	-

TABLE (33) RURAL SO6 Transport \& Communications Engel Curve Estimation.

Model	a	b	F	R^{2}	D.W.
(A)	-831.04474	0.06207	1410.411	0.086	1.992
(B)	-3725.84840	419.23010	77.855	0.005	1.993
(C)	289.08467	-784883.21456	7.411	0.000	1.990
(D)	26.02644	0.00000	3820.685	0.204	1.990
(E)	-1527.69943	14.71856	372.678	0.024	1.994
(F)	1.92738	0.00002	834.022	0.053	1.543
(G)	-8.06139	1.11161	2477.995	0.142	1.560
(H)	2.92546	-4912.48570	1225.416	0.076	1.540
(I)	132.17882	0.00000	4249.978	0.221	1.987
(J)	-1956.00730	91.62862	224.740	0.015	1.994
(E)	-1280.64763	2.47797	609.513	0.039	-
(I)	-227.33125	0.00014	2383.408	0.162	-

TABIE (34) RURAL SO7 Entertainment Engel Curve Estimation.
Model
$\begin{array}{llll}b & R^{2} \quad \text { D.W. }\end{array}$
(A) $\quad-1212.74336$

(A)	-1212.74336	0.14074	3822.842	0.204	1.992
(B)	-15227.062̨86	2175.03167	1023.498	0.064	1.988
(C)	1670.04818	-4628450.07421	119.290	0.008	1.985
(D)	992.16996	0.00000	749.678	0.048	1.983
(E)	-5395.22601	55.61657	2838.644	0.160	1.976
(F)	4.62304	0.00003	1806.042	0.108	1.290
(G)	-6.40789	1.22964	5464.472	0.268	1.281
(H)	5.75113	-5480.82070	2537.033	0.145	1.281
(I)	1096.40660	0.00000	103.133	0.007	1.979
(J)	-8152.97241	394.77675	2161.601	0.126	1.979
(K)	-3666.52790	8.02774	3482.193	0.189	-
(I)	579.37633	0.00018	2013.007	0.119	-

TABLE (35) RURAI S08 Personal Services Engel Curve Estimation.

Model	a	b	F	R^{2}	D.W.
(A)	2171.36739	0.02857	1812.446	0.108	1.601
(B)	-0135.11090	1259.54408	5724.632	0.277	1.650
(C)	3289.55796	-5364725.88462	2374.045	0.137.	1.640
(D)	2634.28083	0.00000	53.269	0.004	1.570
(E)	360.94916	19.50633	5061.608	0.253	1.628
(F)	7.36111	0.00001	776.430	0.049	1.637
(G)	0.70025	0.73142	6306.538	0.297	1.614
(H)	8.04828	-4219.68137	5512.964	0.270	1.659
(I)	2642.62280	0.00000	3.275	0.000	1.571
(J)	-1218.71175	164.55368	5859.519	0.283	1.630
(K)	1241.28641	2.35525	3962.733	C. 210	-
(I)	2580.22397	0.00002	328.212	0.021	-

TABLE (36) RURAL S11 Farinaceous EnEel Curve Estimation.

Model

(A)	1097.24487	0.05254	1878.954	0.112	1.886
(B)	-13393.34733	1642.37892	2510.355	0.144	1.889
(C)	2674.08587	-5885404.22811	792.954	0.050	1.881
(D)	1913.73789	0.00000	220.703	0.015	1.856
(E)	-1444.92094	29.14367	3114.913	0.173	1.888
(F)	3.73629	0.00004	792.362	0.050	1.507
(G)	-13.73590	1.93481	3186.608	0.176	1.491
(H)	5.44521	-9032.21276	1743.894	0.105	1.497
(I)	1960.34241	0.00000	37.074	0.002	1.854
(J)	-3525.52975	233.94471	3161.859	0.175	1.886
(K)	-254.54734	3.72870	2855.716	0.160	-
(L)	1805.62984	0.00005	652.8730	0.042	-

TABLE (37) RURAL S12 Neat \& Fish Eng el Curve Estimation.

Model	a	b	F	R^{2}	D.W.
(A)	860.06193	0.01398	1007.649	0.063	1.635
(B)	-3925.24817	536.41209	2088.340	0.123	1.636
(c)	1356.93645	-2208263.70772	898.126	0.057 .	1.630
(D)	1084.42530	0.00000	66.657	0.004	1.615
(E)	72.23386	8.70625	2096.273	0.123	1.637
(F)	5.19036	0.00002	339.308	0.022	1.527
(G)	-3.27166	0.93674	1282.037	0.079	1.518
(H)	6.06504	-4789.52482	892.464	0.056	1.516
(I)	1090.11017	0.00000	9.148	0.001	1.613
(J)	-599.99364	72.04676	2279.807	0.132	1.634
(K)	449.86674	1.07690	1789.655	0.107	-
(L)	1054.66533	0.00001	263.220	0.017	-

TABLE (38) RURAL S13 Dairy Products Engel Curve Estimation.

Model	a	b	F	R^{2}	D.W.
(A)	227.98363	0.00755	626.471	0.040	
(B)	-2132.28943	271.08138	1096.516	0.068	1.672
(c)	524.69553	-1012834.75545	399.478	0.026 .	. 1.680
(D)	399.71429	0.00000	30.379	0.002	1.669
(E)	-137.68656	4.61826	1221.603	0.076	1.669
(F)	3.61555	0.00002	- 398.899	0.026	1.613
(G)	-5.00694	0.95573	1408.206	0.086	1.604
(H)	4.51942	-4889.77991	979.329	0.062	1.616
(I)	402.47686	0.00000	1.452	0.000	1.669
(J)	-482.38076	37.71091	1284.777	0.079	1.668
(K)	59.11271	0.57716	1074.2390	0.067	-
(L)	383.86405	0.00001	153.7000	0.010	-

TABLE (39) RURAL S14 Edible Cils Engel Curve Estimation. ∇

Model	a	b	F	R^{2}	D.W.
(A)	582.82296	0.01670	1269.219	0.078	1.572
(B)	-5081.44179	635.21891	2620.837	0.149	1.601
(C)	1141.98781	-2351569.31432	882.984	0.056	1.581
(D)	852.56970	0.00000	51.727	0.003	1.544
(E)	-384.89245	10.62843	2827.409	0.159	1.591
(F)	4.59635	0.00002	658.692	0.042	1.473
(G)	-7.19400	1.30277	3003.934	0.167	1.479
(H)	5.80570	-6783.00863	2111.242	0.124	1.470
(I)	858.19504	0.00000	3.457	0.000	1.543
(J)	-1195.87628	87.54177	3051.852	0.170	1.594
(K)	76.74832		1.31359	2394.287	0.138
(I)	818.97312	0.00001	274.564	0.018	-

TABLE (40) RURAL S15 Vegetable \& Fruit Engel Curve Estimation.

TABIE (41) RURAL S16 Nut \& Seed Engel Curve Estimation.

Model

(A)	512.61044	0.00859	1028.691	0.064	1.742
(B)	-2064.29082	290.74544	1607.694	0.097	1.765
(C)	797.54040	-1186855.54840	690.408	0.044.	1.757
(D)	649.64816	0.00000	102.864	0.006	1.726
(E)	79.94548	4.91102	1763.473	0.106	1.755
(F)	5.69717	0.00001	626.094	0.040	1.508
(G)	0.64134	0.58566	4152.067	0.218	1.488
(H)	6.52266	-3359.17587	3632.186	0.196	1.511
(I)	653.99444	0.00000	11.972	0.001	1.727
(J)	-281.92570	39.90221	1837.229	0.109	1.758
(K)	284.32395	0.62196	1590.593	0.096	-
(L)	629.51900	0.00001	340.297	0.022	-

TABIE (42) RURAI S17 Confectionary \& Tea Engel Curve Estimation.

Model
a

b	F	R^{2}	D. $\%$.
0.00034	197.155	0.013	1.834
10.85617	267.038	0.018	1.836
-45067.14417	124.378	0.008	1.834
0.00000	31.321	0.002	1.829
0.18500	295.930	0.019	1.836
0.00001	430.435	0.028	1.388
0.57777	1900.037	0.113	1.357
-3088.88834	1441.319	0.088	1.377
0.00000	5.608	0.000	1.829
1.49476	303.682	0.020	1.836
0.02367	274.830	0.018	-
0.00000	81.741	0.005	-

TABLE (43) RURAL S18 Sauce \& Taste \& Remainder Foods Engel Curve Estimation.

Model	a	b	F	R^{2}	D.W.
(A)	247.48235	0.00697	542.009	0.035	1.850
(B)	-1887.31345	240.59374	869.826	0.055	1.863
(C)	468.77786	-881727.50206	307.398	0.020	1.844
(D)	359.39653	0.00000	35.120	0.002	1.823
(E)	-123.38911	0.15317	995.007	0.062	1.866
(F)	2.53073	0.00002	335.151	0.022	1.696
(G)	-5.91786	0.93822	1051.028	0.066	1.722
(H)	3.37169	-4283.07328	580.004	0.037	1.705
(I)	362.27533	0.00000	2.585	0.000	1.821
(J)	-429.24902	33.73745	1034.162	0.065	1.867
(K)	51.57271	0.52242	888.625	0.056	-

TABLE (44) RURAL S19 Drink \& Tobacco Engel Curve Estimation.

BEST FIMTEI NOEEIS

Best fitted models with respect to "R"*, $N_{R}^{2} \eta_{n}$, Standard error of est. $S_{20}^{\mathrm{U}}=-16455.21858+061.80456 \mathrm{Y}^{1 / 3}$
(0.63722)
$\operatorname{InS} \mathrm{R}_{20}=0.87513+0.52135 \operatorname{InY}$

- (0.68035)
$S_{10}^{U}=-6936.75282+0.85536 \mathrm{Y}$ (0.96414)
$S_{10}^{R}=-5928.54287+0.86164 \mathrm{Y}$ (0.95864)
$S_{O 2}^{\mathrm{U}}=-4967.41815+257.61718 \mathrm{Y}^{1 / 3}$ (0.47658)
$\operatorname{InS} \mathrm{O}_{\mathrm{O}}^{\mathrm{R}}=-14.86175+2.08444 \operatorname{In} \mathrm{Y}$ (0.49331)
$\operatorname{Ir} S_{O 3}^{U}=-0.15690+0.88704 \operatorname{In} Y$ (0.70107)
$\operatorname{InS}{ }_{03}^{\mathrm{R}}=1.55151+0.59358 \operatorname{In} Y$
(0.56855)
$\operatorname{In} S_{O 4}^{\mathrm{U}}=-0.23746+0.95022 \operatorname{In} Y$ (0.58617)
$S_{04}^{R}=3.44593+0.00061 \mathrm{Y}^{3 / 2}$
(0.70971)
$\operatorname{In} S_{05}^{U}=-5.99174+0.98390 \operatorname{In} Y$
(0.31960)
$\operatorname{In} S_{05}^{R}=-9.04548+1.26589 \operatorname{In} Y$
(0.35599)
$S_{06}^{U}=-696.91431+0.00035 \mathrm{Y}^{3 / 2}$
(0.58211)
$\operatorname{LnS} \mathrm{S}_{06}^{\mathrm{R}}=-10.79204+1.57964 \operatorname{In} \mathrm{Y}$
(0.46221)
* With 0.01% significance Tevel; $F[P>6.64]=0.01$.

$$
\begin{aligned}
& \begin{aligned}
& \operatorname{In} \mathrm{S}_{\mathrm{O} 7}^{\mathrm{U}}=-9.50637+ 1.29962 \operatorname{InY} \\
&(0.44106)
\end{aligned} \\
& S_{07}^{R}=132.17882+\frac{0.00000 Y^{3}}{(0.47059)} \\
& S_{08}^{U}=-266.29366+\underset{(0.52856)}{0.00023 Y^{3 / 2}} \\
& \operatorname{InS} S_{C 8}^{R}=-6.40789+(1.22064 \operatorname{InY} \\
& \operatorname{InS} \mathrm{U}_{11}^{\mathrm{U}}=-1.54953+\underset{(0.39067)}{ } 0.78030 \operatorname{InY} \\
& \operatorname{InS} S_{11}^{R}=0.70025+0.73142 \operatorname{In} Y \\
& S_{12}^{U}=-3945.33882+\underset{\left(0.42350 Y^{1 / 3}\right.}{ } \quad(0.50930)^{1 / 3} \\
& \begin{aligned}
& \operatorname{Ln} S_{12}^{R}=-13.73590 \\
&+(0.93481 \operatorname{Ln} Y \\
&(0.41927)
\end{aligned} \\
& \begin{aligned}
\mathrm{S}_{13}^{\mathrm{U}}=-971.39021+ & 73.44064 \mathrm{Y}^{1 / 3} \\
& (0.43268)
\end{aligned} \\
& \begin{aligned}
& S_{13}^{R}=-599.99364+72.04676 Y^{1 / 3} \\
&(0.36385)
\end{aligned} \\
& S_{14}^{U}=-598.83909+\underset{(0.17599)}{7.02129 Y^{1 / 2}} \\
& \operatorname{Ln} \mathrm{~S}_{14}^{\mathrm{R}}=-5.00694+\underset{(0.29348)}{0.95573 \ln Y} \\
& S_{15}^{\mathrm{U}}=-3053.28842+\underset{(0.49328)}{188.66779} \mathrm{Y}^{1 / 3} \\
& \begin{aligned}
& S_{15}^{R}=-1195.87628+ 87.54177 Y^{1 / 3} \\
&(0.41184)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& S_{16}^{U}=-222.10569+\underset{(0.18510)^{2}}{2.72924} \mathrm{Y}^{1 / 2} \\
& \operatorname{InS} S_{16}^{R}=-6.13366+\underset{(0.29589)}{0.98001} \operatorname{InY} \\
& S_{17}^{U}=-509.44931+8.70897 Y^{1 / 2} \\
& \text { (0.25002) } \\
& \operatorname{InS}{ }_{17}^{R}=0.64134+0.58566 \operatorname{In} Y \\
& \text { (0.46677) } \\
& \operatorname{In} S_{18}^{U}=-2.88436+0.35018 \operatorname{In} Y \\
& \operatorname{In} S_{18}^{R}=-3.35746+0.57777 \operatorname{In} Y \\
& \text { (0.33589) } \\
& S_{19}^{U}=-210.15953+\left(1.06244 \mathrm{Y}^{2 / 3}\right. \\
& \operatorname{In} S_{19}^{R}=-5.91786+\underset{(0.938626)}{0.9322} \operatorname{InY}
\end{aligned}
$$

FIMDINGS

As a concluding note, and also gatherring the important points of the present research, in this part there is a glance at the reached findings briefly. Generally as the title of the study expresses: this study is an estimation of Engel.'s curve but parallel to estimating, improvement of techniques is under consideration.

As a remembrance let's count some of the important cited points throughout the text:
(i) Food is the most important item in household budgets; (Engel's law).
(ii) The proportion of total expenditure allocated to food decreases as icome increases; (Encel's law).
(iii) The propotion devoted to clothing and housing is approximately constant, while tre share of luxury items increases, when income increases; (Ingel's law).
(iv) The percent of income spent for housing declines as income rises; (Schwabe's law).
(v) High-quality housine in reality is one of the main luxuries of consumers; ($\%$. Reid, permanent income concept).
(vi) Housing and food have Iow income elasticities; (other researchers findings).
(vii) Clothing and €ducation have income elasticities close to unity; (other researchers findings).
(iix) Recreation, personal care, home operation and other services have higher income elasticities; (other researchers findings).

For most commodity bundles the income elasticities estimated for $\operatorname{Iran}(U r b a n$ \& Rural), confirm the cited points; and are: comparable with the income elasticities obtained in other countries. Attempts have also been made to compare the income elasticities derived in the present study with income elasticities derived in other studies in Iran, either on the basis of different data and/or of different methodologies. This comparability strengthens confidence in the present study, specially in view of a considerable difference in terms of methods.

In the present study seven new models have been adced to the selected models by the previous researchers.

Prais \& Houthakker concluded that: the semi-log function gives the best results, as far as food items are concerned;
for all other goods and services, the couzNe-こoe Sor- zives the best stetistice2 results.

Seri-log form in our findings coes not show the best statistical results, arid is arong the rext best foclens; but doukle-Iog furction is the vest fittec rodel rearly for falf of the vuncles, and also, has'better fitting to rural cata; (13 best of 10 doublelog estimatiors have beer. fitted to the rural cata).

The results also confirm our hypotieses evout upward convexity for necessities; upward concavity for luxuries; and linear form for bundles which have constant mareinal propensity to consume. But among them there is an exception: ruraI entertainment best fitted model is concave upward, by income elasticity at the means of the variables, equal to "0.06". This point does not reject the hypothesis as will be explained.*

According to our consicerations in the previous parts: In general there will be a level of income below which the consumer purchases none of the good; the results show negative intercepts for the best fittec models (except double-log models which have no intercepts -as a eereral functional form); except rural furniture $(a=3.44503)$ and entertainment $(a=1 \geq 2.17822)$.

* It should be noted that the urban data are more reliable than rumal data, (beacuse there are many problems facing the statisticians, in practical ciata collecting-specially at the rural areas of Iran).

Total NonFood S10

Best fitted models for Urban and Rural, both, are linear ('(A)'). This point confirms the third hypothesis about constancy of marginal propensity to expend (:PD), for total nonfood bundle.

$$
\begin{aligned}
& S_{10}^{\mathrm{U}}=-6930.75282+0.85536 \mathrm{Y} \\
& \mathrm{~S}_{10}^{\mathrm{R}}=-5928.54287+0.86164 \mathrm{Y}
\end{aligned}
$$

their MAns are:

$$
\begin{aligned}
& \operatorname{MPS}_{10}^{U}=0.85536 \\
& \mathrm{MPF}_{10}^{\mathrm{R}}=0.86164
\end{aligned}
$$

their income elasticity at the means of the variables:

$$
\begin{aligned}
& \mathrm{E}_{10}^{\mathrm{U}}=1.28 \\
& \mathrm{E}_{10}^{\mathrm{R}}=1.71
\end{aligned}
$$

The rural income elasticity for total non-food bundle, is greater than income elasticity at the urban areas. this is not a contradiction. The problem is obvious, beacuse the rural people are self-sufficient of food productions there are emphasis to purchase commodities -non food- for
rural peoples. Ch the other head, income elasticities difference shows that demand for total ron-fcod as a whole is more elastic at the rural areas than urban areas.

Urban and rural income elasticities difference can be shown mathematically in this way:

$$
E=\frac{\frac{d S}{d Y}}{\frac{S}{Y}}=\frac{\cdot P E}{A P \dot{I}}
$$

we have:

$$
\mathrm{NPE}_{10}^{\mathrm{U}} \# \mathrm{FPE} \mathrm{E}_{10}^{\mathrm{R}} \neq 0.85
$$

and,

$$
A P E_{1 C}^{U}=0.66560>A P \Sigma_{10}^{R}=0.50281
$$

so:

$$
\frac{A I E_{10}^{U}}{A P E_{1 C}^{U}}<\frac{D P S_{10}^{\mathrm{R}}}{A I E_{10}^{\mathrm{L}}}
$$

or:

$$
\mathrm{E}_{10}^{\mathrm{U}}<\mathrm{E}_{10}^{\mathrm{Z}}
$$

Totel Food

 220
Selected fitted models ere:

$$
\begin{aligned}
& S_{20}^{U}=226 \cdot 64877+12 \cdot 158 C 6 \mathrm{Y}^{2 / 3} \\
& \mathrm{~S}_{20}^{\mathrm{R}}=1984 \cdot 21029+10 \cdot 46533 \mathrm{Y}^{2 / 3}
\end{aligned}
$$

These two functions coth are convex upward; the first, the second ard the thirc best models, which have been fitted to both urben and rural total food data ere convex upvard too. This is a confirmetion for the first hypothecis.

Their income elesticities are:

$$
\begin{array}{ll}
\mathrm{E}_{2 \mathrm{C}}^{\mathrm{U}}=0.65 & \text { (at the mears) } \\
\mathrm{E}_{2 \mathrm{C}}^{\mathrm{R}}=0.82 & \text { (at the means) }
\end{array}
$$

The rural income elasticity is greater than income elasticity at the urban ereas, wich is consistent with the Engel's Iaws. Our selection is based upor choosing the models which satisfy voth the Ingel's laws and possessing significant statistical results.

- Estimatec income elasticities for the year 1378 for urben areas (Bank Narkazi 106๕) are:

0.51	food at home
0.77	food away from home

We mixed them together by the proceciure at the appendix ' A ', and found:

$$
0.52 \text { total food (est.) }
$$

In the year 1347 (Bank Narkazi 1971):
0.58 food at home
0.82 food away from home
0.59 total food (est.)
A. Le Baron estimated income elasticities for the paoled years: 1338 \& 1344 for urban Iran, and for the yooled years 1342,1343,1344 for rural Iran, which are inconsistent with other estimations, his income elasticities are based on

	1338	1338,1344	1347	1356
Urban	$\begin{aligned} & 0.52 \\ & \text { est. } \end{aligned}$	$\begin{aligned} & 0.92 \\ & \text { pooled } \end{aligned}$	$\begin{aligned} & 0.59 \\ & \text { est. } \end{aligned}$	0.65
Rural	-	$\begin{gathered} 1.71 \\ \text { pooled } \end{gathered}$	-	0.82
		1342,3,44		

quantity ciata, not experditure data. Except Ie Baron's estimation, trends of income elasticity at the urban areas show that the real income tends to decrease.

Clothing SO2

Best fitted models are:

$$
\begin{aligned}
\mathrm{S}_{\mathrm{O} 2}^{\mathrm{U}} & =-4067.41815+257.61718 \mathrm{Y}^{1 / 3} \\
\ln \mathrm{~S}_{\mathrm{O} 2}^{\mathrm{R}} & =-14.86175+2.08444 \operatorname{InY}
\end{aligned}
$$

Their income elasticities are:

$$
\begin{aligned}
& \mathrm{E}_{02}^{\mathrm{U}}=0.94 \\
& \mathrm{E}_{\mathrm{O2}}^{\mathrm{R}}=2.08
\end{aligned}
$$

(at the means)
(constant)
Angel believed that the proportion devoted to clothing and housing is approximately constant, while the share of luxury items increases when income increases. Income elastincity for clothing at the urban areas confirms his idea; but its income elasticity at the rural areas does not confirm this concept and shows that clothing is a luxury bundle for rural areas. Fe reason is that Iranian farmers receive their revenue at the end of each season after the sale of their products. So, they rush to the market at the end of the season, when they have cask money. Therefore, this phenomenon appears at the monthly data of budget survey strictly, so higher income owners purchase more clothes; this point makes the income elasticity higher.

The best cited rodels for ciothing both confirm the hypotheses.*

	1338	1347	1356
Urban	0.83 est.	0.91	0.94
Rural	-	-	2.08

Source: Dank Markazi Iran

The trend of urban income elasticities is positive, and shows that the increasing importance of the clothing - but it is'not conclusive- and its fashions with respect to relation and communication of the urban people of Iran with other countries.

* It should be noted that, couble-log models a.utomatically satisfy our hypotheses. By this ve mean that if $b<1$ shape of the mocel is convex upward ard cormocity is necessity too. If b>1 shape of the modei is concave upward anc commodity is luxury too. When $b=1$ model is linear and satisfies the third hypothasis criteria.

Housing SO3

Best fitted models for urban and rural areas are both double-Iog $(,(G)$,$) :$

$$
\begin{aligned}
& \operatorname{InS} \mathrm{O}_{\mathrm{O}}^{\mathrm{U}}=-0.15690+0.88704 \operatorname{InY} \\
& \operatorname{LnS} \mathrm{~S}_{\mathrm{O}}^{\mathrm{R}}=1.55151+0.59358 \operatorname{In} Y
\end{aligned}
$$

so they possess constant elasticities:

$$
\begin{aligned}
& \mathrm{E}_{03}^{\mathrm{U}}=0.89 \\
& \mathrm{E}_{03}^{\mathrm{R}}=0.59
\end{aligned}
$$

Income elasticity of housing expenditure at the urban areas confirms the Engel's idea about approximate constancy of the proportion devoted to housing, when income increases. Though some researchers findings that is food and housing have low incore elasticities, (R.D.Mack 1952) are more comsistent with our findings at the rural areas.

	1338	1347	1356
Urban	0.88 est.	0.81 est.	0.89
Rural	-	-	0.59

Source: Bank Fiarkazi Iran.

Income elasticity at the urcan areas is greather than incore elasticity at the rural areas, beacuse at the rural areas the rural people construct their houses themselves with assistance of their friends. This situation is not similar with construction procedure in the urbar areas of Iran.

The, urben income elasticity fluctuations vare expectec to be in some part due to the price fluctuations of construction meterials during the, cited period - but not conclusively.

Furniture

SO4
Best fitted models are:
$\operatorname{InS} S_{\mathrm{O4}}^{\mathrm{U}}=-0.23746+0.95022 \operatorname{InY}$

$$
\mathrm{S}_{04}^{\mathrm{R}}=3.44593+0.00061 \mathrm{Y}^{3 / 2}
$$

Rural furniture model confirms the second hypothesis; it is concave upward and its income elasticity is greater than unit at the means of the variables.

Income elasticities for both urban and ruralareas are:

$$
\mathrm{E}_{\mathrm{O4}}^{\mathrm{U}}=0.95 \quad \text { (constant) }
$$

$$
\mathrm{E}_{\mathrm{O} 4}^{\mathrm{R}}=1.49 \quad \text { (at the means) }
$$

They show that furniture is a luxury bundle for rural areas; but proportion devoted to furniture is aproximately constant when income increases (for urban areas).

	1338	1347	1356
Urban	1.01	0.98	0.95
	est.	est.	
Rural	-	-	1.49

Source: Bank Narkazi

The trend of urban income elasticities is decreasing and shows the decreasing importance of the furniture in the urban consumer budget curing the cited period; but it should be noted that we carnot compare the income elasticities at different points of time conclusively, beacuse the data coverage as well as the models used might not be the same. Moreover, situations under which the Ergel's curves were estimetec have chare.

Health \& Medical Care
SO 5
Best fitted models for urban and rural both are double$\log ,(,(G)$,$) ,$

$$
\begin{aligned}
& \operatorname{Ln} S_{O 5}^{U}=-5.99174+0.98390 \operatorname{In} Y \\
& \operatorname{InS} S_{O 5}^{\mathrm{R}}=-9.04548+1.26589 \operatorname{InY}
\end{aligned}
$$

Their income elasticities are constant:

$$
\begin{aligned}
& E_{05}^{U}=0.98 \\
& E_{05}^{R}=1.26
\end{aligned}
$$

Therefore, proportion devoted to health and medical care is nearfly constant at the urban areas; but the higher income elasticity for rural areas arises from their relative backwardness and inaccessibility to physicians and medicine, and other seasonal problems they are confronted with.

	1338	1347	1356
Urban	0.87	0.82	0.98
Rural	-	-	1.26

Source: Bank Markazi

Another problem which causes this differerce is: the proportion of people irsured in the rural areas is less than the proportion of the people insurec in the urian areas.

The increments of urban health and redical care income elasticities in the year 1356 is beacuse of the obligative insurance and also promotion of general level education and urbanization.

Transport \& Communications
S06
Best fitted models Ere:

$$
S_{O 6}^{U}=-696.91431+0.00035 \mathrm{Y}^{3 / 2}
$$

$$
\operatorname{Ins} \mathrm{R}_{06}^{\mathrm{R}}=-10^{\circ} .79204+1.57964 \operatorname{In} Y
$$

Both models are concave upward which the first one confirms the second hypothesis.

Their income elasticities are:

$$
\begin{array}{ll}
\mathrm{E}_{06}^{\mathrm{U}}=1.84 & (\text { at the means) } \\
\mathrm{E}_{06}^{\mathrm{R}}=1.58 & \text { ('onstant) }
\end{array}
$$

Transport \& communication for both urban and rural people is a luxury; but urban's income elasticity is greater than rurals', it is beacuse of the need for .the rural people to transport their products in order to sell them in the markets end purchese their necessetties.

	1338	1347	1356
Urban	1.17	1.75	1.84
Rural	-	-	1.58

Source: Bank Narkazi.

High income elasticities for trensport anc communications also show that traveiling is Iuxury item. It should be noted that existance of the item "trips to forien countries" in this bundle is one of the points which make the urban and rural income elasticities different, beacuse usually urban people use this item. Another reason is te fact thet private transportation is included in this buncle. It cer be accounted as rousehole satine and can be regarded as a Iuxury item as well.

Urban incore elosticities trend is positive beacuse of some reasons. First, permanent increrent in prices of the private trensportation. Seconc, the Erovith of cities. Trird, injection of the oil revenue into the econory during the cited period.

Entertainment SO7

Best fitted models are:

$$
\begin{aligned}
\operatorname{In} S_{\mathrm{O}}^{\mathrm{U}} & =-9.50637+1.29962 \operatorname{InY} \\
\mathrm{~S}_{07}^{\mathrm{R}} & =132^{\circ} .17882+0.00000 \mathrm{Y}^{3}
\end{aligned}
$$

The coefficient of Y is not zero, we calculated by the procedure cited at the appendix B, and it is equal to: $(1.38298) 10^{-11}$ so:

$$
\mathrm{S}_{\mathrm{O7}}^{\mathrm{R}}=132 \cdot 17882+(1 \cdot 38298) \cdot 10^{-11} \mathrm{Y}^{3}
$$

Their income elasticities are:

$$
\begin{array}{ll}
\mathrm{E}_{07}^{\mathrm{U}}=1.30 & (\text { constant }) \\
\mathrm{E}_{07}^{\mathrm{R}}=0.96 & (\text { at the means })
\end{array}
$$

Income elasticity of Entertainment expenditure, shows that it is a Iuxury bundle at the urban areas, and is consistent with other researchers fincings:"recreation has higher income elasticity"(R.P. Nack 1952). Its income elasticity for rural areas is low with respect to urbans'. This is beacuse of existence of expensive amusement in the urban areas. For example we can refer to the following list of amusement which do not exist, nor are usable at the rural areas. On the other hand rurel people are not familiar with them. The rural low purchasing power is pnother point.
iist of selective urzan aruserent:
Cinema, sheater, sport ectivity, concerts, television, tape recorder, record-player, musical instruments, orchestra, photography, toys, mountsin-climbing, ski, playing chess, lotto, and so on.

	1338	1347	1356
Urban	1.25	1.22	1.30
Rural	-	-	0.96

Source: Bank Markazi.

Rural best fitted model is concave upraro, but its income elasticity is less than unit. This point does not reject the hypothesis, beacuse shape of the model shows that the upward concavity of the model bezine when the income approaches high levels*, and also it is obvious that income level at the rural areas is very low, so rural people do not use the cited list of amusement and their income elasticity remaines lower.

This is the point that we did not leave the coefficient of "y" as zero. When the exponent of "Y" is three and its coefficient is tery small, pel is showh as a line in low income rangos and then tends upward strictly by increasing income.

Personal Services $\quad 08$

Best fitted models are:

$$
\begin{aligned}
S_{08}^{U} & =-266.29366+0.00023 \mathrm{Y}^{3 / 2} \\
\operatorname{Ln} S_{08}^{U} & =-6.40789+1.22964 \operatorname{InY}
\end{aligned}
$$

Their income elasticities are:

$$
\begin{array}{ll}
E_{08}^{U}=1.69 & (\text { at the means }) \\
E_{08}^{R}=1.23 & (\text { constant })
\end{array}
$$

Both models are concave upward, and the first one is a confration for the second hypothesis. Both are consistent with other researchers findings:"Personal services have hither income elasticities", (R.P. Wack 1952).

Income elasticity of personal services for the urban areas is greater than rural. This is beacuse of the existence of some items inside the urban's bundle, which do not exist inside the rural'. For example we can count the following inter:

Beauty salons, electric shavers, shaving cream, pipe, shampoo, spray, Lotions, perfumes, tooth brush, lighter, and so on.

The above items are rot usually used at the rural areas, to some extents, customs, traditions and their mode of daily
works are the prevertives of usirg them; end also we can say that the rural people are not familier with the citec items. The rural low purchasing power is another point in this field.

	1338	1347	1356
Urben	0.60	0.52	1.69
Rural	-	-	1.23

Source: Bank Sarkazi, Iran.

As an explenation, it should be noted that: the same reasons for the lover income elasticity in the rural areas could be mentioned, the low income elasticities of personal. services for the urban areas in the years $1: 38,1347$, relative to 1356.

Best fitted models are both double-log for urban and rural हveas:

$$
\begin{aligned}
& \operatorname{LnS}_{11}^{\mathrm{U}}=-1.54953+0.78030 \operatorname{InY} \\
& \operatorname{LnS}{ }_{11}^{\mathrm{R}}=0.70025+0.73142 \operatorname{LnY}
\end{aligned}
$$

Their income elasticities are constant (. both are necessities).

$$
\begin{aligned}
& \mathrm{E}_{11}^{\mathrm{U}}=0.78 \\
& \mathrm{E}_{1.1}^{\mathrm{R}}=0.73
\end{aligned}
$$

Urban's income elasticity of farinaceous is greater than rurals'. This is beacuse of rural peoples are seIf-sufficient of farinaceous products -bu't the cifference is not conclusive*.

	1338	1347	1351	1353	1356
Urben	flour	flour	$\begin{gathered} \text { farin- } \\ \text { aceous } \\ 0.56 \end{gathered}$	flour	
	\&rice 0.33	\&rice 0.13		\&rice	farin-
				0.30	aceous
	bread 0.27	$\begin{aligned} & \text { bread } \\ & 0.17 \end{aligned}$		bread 0.24	0.78
Rural	-	-	-		
S					0.73

Low income elasticities of Iarinaceous are consistent with other researcher's findings (R.P. Nack 1952).

* Sinee the difference i.s small, we can test the hypothesis: $H_{28}: M_{11}=M_{11}$, usiñ Ghow test, where M is reai elesticity. new regression. Since at this stage, we do not data and run computer facilities, we cannot do the test not nave access to the nulj hypothesis the reason coule test. So if we reject sufficiency situation for farin could be due to the selfareas.

Neat \& Fish S12

Best fitted models are:
$S_{12}^{U}=-3945 \cdot 33882+24 \cdot 42350 \mathrm{Y}^{1 / 3}$

$$
\operatorname{InS}{ }_{12}^{R}=-13.73500+1.93481 \operatorname{InY}
$$

Their income elasticities are:

$$
\begin{array}{ll}
\mathrm{E}_{12}^{\mathrm{U}}=0.73 & \text { (at the means) } \\
\mathrm{E}_{12}^{\mathrm{R}}=1.93 & \text { (constant) }
\end{array}
$$

Urban best fitted model confirms the first hypothesis. Income elasticities show that meat \& fish are necessities at the urban areas, and luxuries for rural areas. This point confirms the Angel's law: "The proportion of total expenditures allocated to food decreases as income increases"; but it shows that when the income level gap is wide, the expensive foods are luxuries for lower income levels. As a confirmation mean of the total expenditure at the urban areas is more than two times greater than the mean of the rural total expenditures.

$$
\begin{aligned}
& \bar{Y}_{U}=36556.2515 \\
& \bar{Y}_{R}=16522.0385
\end{aligned}
$$

	1338	$\begin{gathered} \text { poolled } \\ 1338,1344 \end{gathered}$	1347	1351	1353	1356
Urban	$\begin{aligned} & 0.91 \\ & \text { est. } \end{aligned}$	$\begin{aligned} & 0.93 \\ & \text { est. } \end{aligned}$	0.75	0.83	$\begin{aligned} & 0.84 \\ & \text { est. } \end{aligned}$	0.73
Rural	-	$\begin{gathered} 1342,3,4 \\ 2.33 \\ \text { est. } \end{gathered}$	-	-	-	1.93

Source:Bank Narkazi Iran. Ie Baron 1972.

This point should be noted that the rural people are self-sufficient of meat products; but they procuce them for sale rather then for consumption.

Dairy Products S13

Best fitted models are:

$$
\begin{aligned}
& \mathrm{S}_{13}^{\mathrm{U}}=-971.39021+73.44064 \mathrm{Y}^{1 / 3} . \\
& \mathrm{S}_{13}^{\mathrm{R}}=-509.99364+72.04676 \mathrm{Y}^{1 / 3}
\end{aligned}
$$

Both models are of kind (J), convex upward, which with respect to their income elasticities, they confirm the first hypothesis. Their income elasticities at the means of the variables are:

$$
\begin{aligned}
& \mathrm{E}_{13}^{\mathrm{U}}=0.60 \\
& \mathrm{E}_{13}^{\mathrm{R}}=0.51
\end{aligned}
$$

Urban income elasticity is greater than rurals ${ }^{2}$ beacuse of the self-sufficiency situation for dairy products at the rural areas; but they are consistent with other researchers findings, (R.P. Nack 1952). The difference is not conclusive.*

	1338	1347	1351	1353	1356
Urban	0.59	0.70	0.85	0.69	0.60
Rural	-	-	-	-	0.51

Source: Bank Narkazi Iran.

Ddible Cils
 S14

Best fitted models are:

$$
\begin{aligned}
S_{14}^{U} & =-598.83909+7.02129 Y^{1 / 2} \\
\operatorname{Ln} S_{14}^{R} & =-5.00694+0.95573 \operatorname{Ln} Y
\end{aligned}
$$

Their income elasticities are:

$$
\begin{array}{ll}
E_{14}^{\mathrm{U}}=1.00 & \text { (at the means) } \\
E_{14}^{\mathrm{R}}=0.95^{\circ} & \text { (constant) }
\end{array}
$$

Urban income elasticity of edible oils is less than rural incomé elasticity, beacuse animal oils item exists inside the bundle, and rural people are self- producers of this item , but this point is not conclusive.

	1338 Urban 1338,1344 pooiled	1347	1351	1353	1356	
	0.67	0.56 $1342,3,44$ pooiled	0.31	0.83	0.81	1.00
Rural	-	1.11	-	-	-	0.95

Source: Bank Markazi Iran.
Le Baron 1972.

Vegetable \& Fruit
S15
Best fitted models are of the form (J) :

$$
\begin{aligned}
& S_{15}^{U}=-3053.28842+188.66779 Y^{1 / 3} \\
& S_{15}^{R}=-1195.87628+87.54177 Y^{1 / 3}
\end{aligned}
$$

Their income elasticities at the means of the variables are:

$$
\begin{aligned}
& E_{15}^{\mathrm{U}}=0.73 \\
& \mathrm{E}_{15}^{\mathrm{R}}=0.79
\end{aligned}
$$

Both models are convex upward and confirm the first hypothesis. Income elasticities of vegetable \& fruit confirm the Engels's law and other researchers findings about low income elasticity for foods,(R.P. Mack 1952) - but not strongly. *

Source: Bank Narkazi Iran.
Ie Baron 1972.

* See pase 142 Footnote.

Nut \& Seed S16

Best fitted models are:

$$
\begin{aligned}
& S_{16}^{\mathrm{U}}=-222.10569+2.72924 Y^{1 / 2} \\
& \operatorname{LnS} \\
& 16=-6.13366+0.98001 \operatorname{LnY}
\end{aligned}
$$

Their income elasticities are:

$$
\begin{array}{ll}
\mathbb{E}_{16}^{\mathrm{U}}=0.96 & \text { (at the means) } \\
\mathbb{E}_{16}^{\mathrm{R}}=0.98 & \text { (constant) }
\end{array}
$$

Both models are convex upward and with respect to their income elasticities confirm the hypotheses. They aiso confirm the Engel's law, and are consistent with other researchers findings (R.P. Nack 1952) -but not strongly.*

		pool ed				
	1338	1338,1344	1347	1351	1353	1356
	nut	nut	nut	nut	nut	
Urban	0.57	1.36	1.22	1.09	1.42	
	seed	seed	seed	seed	seed	seed
	0.49	0.48	1.10	0.22	0.39	0.96

$$
\begin{aligned}
& \begin{array}{l}
13 \angle 2,3,44 \\
\text { pool ed }
\end{array} \\
& \text { nut } \\
& 2.30 \\
& \text { seed }
\end{aligned}
$$

Source: Bank Markazi Iran.
 rejected, with $\alpha=0 . C 05$ Eienificance leve?. So we assume that the elasticity is equal to one.

Confectionary \& Fea S17

$$
\begin{aligned}
& \text { Best fitted models are: } \\
& S_{17}^{U}=-509.44931+8.70897 \mathrm{Y}^{1 / 2} \\
& \operatorname{InS}_{17}^{\mathrm{R}}=0.64134+0.58566 \operatorname{In} \mathrm{Y}
\end{aligned}
$$

Their inccme elasticities are:

$$
\begin{array}{ll}
E_{17}^{\mathrm{U}}=0.76 & \text { (at the means) } \\
\mathrm{E}_{17}^{\mathrm{R}}=0.58 & \text { (constant) }
\end{array}
$$

Both are convex upward and with respect to their income elasticities, confirm the hypotheses, and are concistent with other researchers findings, (R.P. Nack 1952). Urban income elasticity of confectionary \& tea is greater than rurals', beacuse crinking tea is a constant tradition at the rural areas of Iran.

Sauce \& Taste and Remainder Foods S18

Best fitted models are both double -log (, (G),):

$$
\begin{aligned}
& \operatorname{In} S_{18}^{U}=-2.88436+0.35 C 18 \operatorname{In} Y \\
& \operatorname{InS} \\
& 18
\end{aligned}
$$

They have constant income elasticities and are convex upward:

$$
\begin{aligned}
& E_{18}^{\mathrm{U}}=0.35 \\
& E_{18}^{\mathrm{R}}=0.58
\end{aligned}
$$

Their-income elasticities are consistent with other researchers findings (R.P. Wack 1952); and confirm the Enge?'s Jaw.

Drinks \& Tobacco S19

Best fitted models are:

$$
\begin{aligned}
S_{19}^{U} & =-210.15953+1.06244 \mathrm{Y}^{2 / 3} \\
\operatorname{In} S_{19}^{\mathrm{R}} & =-5.91786+0.93822 \operatorname{InY}
\end{aligned}
$$

Their income elasticities are:

$$
\begin{aligned}
& \mathrm{E}_{19}^{\mathrm{U}}=0.83 \\
& \mathrm{E}_{19}^{\mathrm{R}}=0.93
\end{aligned}
$$

Both models are convex upward and confirm the hypotheses. Our findings are consistent with other researchers findings, and confirm Angel's Idea.

Bundle	URBAN	RURAL
S20 Total Food	1.00646	0.52135
S10 Total Non-Food	1.04449	1.15610
S02 Clothing	1.63710	2.08444
S03 Housing	0.88704	0.59358
S04 Furniture	0.95022	1.10613
S05 Health \& Medical Care	0.98390	1.26589
S06 Transport \& Communications	1.47655	1.57964
S07 Entertainment	1.29962	1.11161
S08 Personal Services	0.73490	1.22964
S11 Farinaceous	0.78030	0.73142
S12 Meat \& Fish	1.54304	1.93481
S13 Dairy Products	1.20526	0.93674
S14 Edible Cils	0.38265	0.95573
S15 Vegetable \& Fruit	1.45829	1.30277
S16 Nut \& Seeds	0.39947	0.98001
S17 Confectionary \& Tea	0.67427	0.58566

TABIE (45) Income Elasticity of Expenditure for URBAN \& RURAL AREAS derived from Corstant Elasticity NodeI(, (G),).

Bundle	URBAN	RURAI
S20 Total Food	0.78	0.52
S10 Total Non-Food	1.28	1.71
S02 Clothing	0.94	2.08
S03 Housing	0.89	0.59
S04 Furniture;	0.95	1.49
S05 Health \& Medical Care	0.98	1.26
S06 Transport \& Communications	1.84	1.58
S07 Entertainment	1.30	0.96
S08 Personal Services	1.69	1.23
S11 Farinaceous	0.78	0.73
S12 Meat \& Fish	0.73	1.93
S13 Dairy Products	0.60	0.51
S14 Edible Oils	1.00	0.95
S15 Vegetable \& Fruit	0.73	0.79
S16 Nut \& Seed	0.96	0.98
S17 Confectionary \& Iea	0.76	0.58
S18 Sauce Taste \& Remainder Foods	0.35	0.58
S19 Drinks \& Tobacco	0.83	0.93

TABLE (46) Income Elasticity of Expenditure for URBAN \& RURAL ARIAS derived from the best fitted models at the means of the variables.
Table (47).
Source: Nurid Islam (1966).
Elasticities por Individual Countries and for All Countries Combined .

Miscellaneou	
Total	
Exp.	Pric
1.114	-
1.126	-. 106
868	-. 078
1.041	-.061
-1.283	-.94
1.343	--. 31
1.063	$-.286$
. 850	$-{ }^{-292}$
. 562	.43)
1.276	$-.860$
. 811	.245
. 902	-.355
108	--.059
1.006	. 238

8	i. iifiliil
ड	

Table(48).
Source: H.S. Houthakker (1969).

Country	Food	Clothing	Housing	Drables	Persomai care	Transport	Racrealion	Shier services
Kores	0.72	0.66	0.74	2.76	1.76	- 3.12	1.78	1.71
Thailand	0.84	1.20	0.16	-1.61	0.93 '	1.57	1.99	1.55
Philippines	0.52	0.75	$1.82{ }^{1.33}{ }^{2.23}$		1.72	2.39	1.69	2.08
Taiwan	0.57	1.26			1.69	2.77	1.76	1.81
Jamaica	0.58	1.95	0.71	2.67	2.35	1.52	2.03	1.83
Panama	0.92	1.08	0.68	1.77	0.92	0.90	1.69	. 87
South Africa	0.80	1.39	0.40	1.47	1.02	1.56	0.98	1.44
Greece	0.73	1.37	0.26	1.28	1.35	1.55	1.3	1.22
Ireland	0.64	1.33	0.85	2.02	1.070	1.92 1.43	1.57	1.93
Pucrto Rico	0.49 0.87	1.00 0.86	0.94 1.03	2.17 2.17	1.04	1.44	0.93	1.09
Israel	0.66	1.10	0.90	1.61	0.99	1.59	1.44	0.97
United Kingdom	0.30	0.62	1.41	1.14	1.35	2.53	0.89	2.63
Australia	0.43	0.45	1.73	1.06	2.34	1.70	0.22	1.14
West Germany	0.60	0.78			1.21	1.45	1.12	1.03
Sweden United States	0.76	0.62	0.92 0.90	1.13, 1.45	1.83 1.69	1.14	1.18	2.31
Mean vahue				1.98			1.81	1,79
$100-500$ $500-1,000$	0.60	0.97	0.68	1.51	1.10	1.34	1.35	1.18
1,000-1,500	0.67	1.09	0.93	1.70	1.20	1.60	1.29	1.30
1,500 and over	0.50	0.72	1.24	1.20	1.60	1.72	0.90	1.77
Overall	0.64	Q. 98	1.00	1.58	1.39	1.80	1,31	1,54

Table (50). Income elasticities for eight expenditure groups for different countries.
Source: A. Clluch, A. Powell, R.A. Willams (1977).

INTERPRETAMION \& CCNCIUSIONS

In this part we try to interpret briefly our findings which are in terms income elasticities.

In the year 1356 that is under considerations of this study, urban and rural populations are approximately equal. Urban total expenditures per family is more than 2.2 times greater than rural total expencitures per family (at the means 'of the total expenditureB).

Therefore, according to our findings, if general level of income at urban and rural increases by one percent for both totel đemands for food (as a burdie) increases by less than one percent at both urban ($0.65 . x$), and rural (0.82%) areas. The demand for farinaceous will be expected to increase by 0.78% at the urban, which is greater than rural increments(0.73%). Dairy products, edible oils, confectionary \& tea, all have this situation, when income increases one percent demand for mentioned bundles will increase less than one percent, (except urban edijhle oils that will increase one percent), with the urban incremental percentage greater than rural percentages. On the other hend we can say if the general level of income increases one percent the derrand pressure on the farinacious,
deiry product, edible oils, confectionary and tea will be expected to be more at the urban than rural areas. Lemand for the mentioned bundles will be expected to increase as follovs: Urban dairy product by 0.60%, rural dairy procuct by 0.51%; urban edible oils by 1.00%, and rural by 0.95%, confectionary and tea at the urben areas by 0.76% and at the rural by 0.58%. But, for other food bundles:

Neat \& fish, vegetable \& fruit, nut \& seed, Crinks and tobacco, sauce and taste and remaincier foods, can be regared as recessities, as income increases one percent for both urban and rural, their demands also will increase but less than one percent at both urban and rural (except meat \& fish for rural areas will increase by 1.93%). So the demand pressure on the mentioned buncles will be more at the rural areas than urban's. It should be noted that more and more pressure will be on the rural demand for meat and fish products. By one percent increment in rural income, nearly 1.93% increase will be expected in meat \& fish demand at the rural areas.

Among all of the urben food bundles sauce 2. taste \& remainder foocis has the lowest income elasticity (0.35%), and shows that demand pressure for this bundle will be the lowest -by increasing income and ceteris-paribue. This point also exists for rural dairy procucts which has the lowest income elasticity in the rural food bunciles ano is equal to: 0.51%.

Generally, if the urban income increases by one percent the pressure will be first on edible oils (1.0c\%), and then on nut \& seed (0.96%), crinks an tobacco (0.83%), farinaceous procucts (0.78%), confectionary and tea (0.76%), vegatable and fruit, meat and fish (0.73%), sauce and taste and remaincer foods (0.35%). If the rural income increases by one percent the demand pressure will be first on meat and $f i s h\left(1.93 F_{i}\right)$, and then on nut and seed (0.08%), edible oils (0.95%), crinks anc tobacco (0.93%), vegetable and fruit (0.70%), farinaceous products (0.730°), confectionery and tea, sauce and taste and remainder foods (0.58%).

For total non-food in gever=- an increase of one percent in income will cause 1.28% increase in demard at the urban and 1.71% increase in demand at the rural areas.

If urban and rural income increase by one percent, the demand for clothing will be expectedto ircresse cy 0.04% for urban and 2.08% for rural. So the demand pressure will be more तh the rural clothing than urban. This situation will also, occur for furniture, health \& medical care. The mentioned burdles income elasticities show, when income increases by one percent at both urban and rural, urban demand for furniture 0.95%, and for health \& medical care 0.98% will $3=$ expected to increase; but rural demand increments for them will be more, and are equal to 1.49% for furniture and 1.26% for health \& medical care.

Housing is in the class of necessities for both urban and rural, by this we mean, when income increases one percent at the both urban and rural, the demand for housing will increas less than one percent, or precisely 0.89% increment in urban derand, and 0.59% increment in rural demand. So the demand pressure will be more on the urban housing than rural.

Transport \& communications is in class of luxuries, for both urban and rural. So by increasing one percent in each urban and rural incores, the increment in demend for transport \& communications will be expected to be 1.84% at the urban, and 1.58% at the rural areas. So the demand prescure will be more on the urban transport \& communications than rural. This situation also exists at urban and rural personal services and entertainment. By one percent increase in each urban and rural incomes, the demand for personal services will be expected to increase by 1.69% at urban and 1.23% at rural areas.

Urban entertainment is a luxury but entertainment at the rural areas hes an incorte elasticity nearone.One percent increase in each urban and rural incomes will cause enterteinment cemand to increase by 1.30% at the urban and by 0.96% at the rural areas.

Generally, if the urban income increases by one percent the demand pressure will be first on transport \& communications (1.84%), and then on personat services (1.69\%), entertainment (1.30\%), health \& medical care (0.98%), furniture (0.95%), clothing (0.94%), housing (0.80%). If the rural income increases by one percent, the demand pressure will be first on ciotnine (2.08\%), and
then or transport and communication (1.58\%), furniture (1.40%), health anc̀ medical care (1.26%), personal services (1.23\%), entertainment ($C .96 \%$), ard holisine ($C .50 \%$). So in brief:
i. Demends for farinaceous products, dairy products, edible oils, confectionary and tea are more irelastic at the rural areas than those in urban areas.
ii. Demands for meat and fish, vegetcile and fruit, nut and seed, drinks and tobacco, sauce and teste and remaincer foods are rore inelastic at the urban areas than rural.
iii. Deriands for housine, transport and communication, entertainment, personal services are more inelastic at the rural areas then those in urban areas.
iv. Demands for clothing, funniture, health and redical care are more inelastic at the urban areas than those in rural aneas.

Generally, with respect to incone eleslicity tables and the above mertioned notes, we can discuss that: by increasing income at a point of time, prices will be expectec to increase more on urban transport and communication, personal services, entertainner.t (sequently); arci rural clotrine,
meat and fish, trensport anc communication, furniture, health and medical cere, personal services (sequently) then other items. So in order to freeze the prices the irport of the rentioned bundles should increase more than others (among all buncles of goods) beacuse increment in the production of industries is not as soon as price increment. If prices change, the variation in the cemand for all the buncles will depend on eatherring and evaluating new information about price elasticities, substitutability and complementarity indicators for the bundles and their items. Since the amourt of variations need to have erouch informetion about the cifferent aspects of consumer behavior for both urban and rural areas, we cannot concluce anymore. So our results and conclusions afe based upon ceteris-peribus.

SUN,RIRY

Engel curveis : furctional relation between family expenditure on a commodity, or commodity bundle and family income. Engel curves estimation is one of the famous procedures to estimate income elasticity of expenditure of commodities. Income elasticity of expenditure is the percentage change in expenditure of the purchased commodity per one percent charge in income.

In the present study, income elasticities for urban \& rural of Iran, year 1356 -via Engel curves- have been estimated.

Used samples are: "Urban \& Rural Semples of Statistical Genter of Iran, year $1356^{\prime \prime}$, which incluce nearly 15000 rural and $150 c 0$ urban statistical cases.

Commodities have broken ino two total food and total nonfood, main bundles. They are divided again to nine food and seven non-food smaller bundies.

For every rural or urban bundle, there are twelve estimated models, which seven of them (models) have been introduce for the first time. The procedure to estimate regression (model) coefficients is O.L.S. by using SPSS computer package program.

The results are mostly consistent with the other's findings. Total food bundles consist of $33^{\circ} .47 \%$ urban and 49.7% rural total expenditures. Total food income elasticities for urban and rural are 0.65 and 0.52 respectively, which express that total food expenditure at the rural areas is more inelastic than rural. Income elasticities of food at the rural and urban areas except the meat \& fish bundle at the rural (1.93), and edible oils at the urban (1.00), are all less than unit; therefore, they are necessities, except meat \& fish for rural areas which is known as a luxury bundle. Among all foods according to their estimated income elasticities demand for bundles: meat \& fish, vegetable \& fruit, nut \& seed, drinks \& tobacco, sauce \& taste and remainder foods, is more inelastic at the urban than rural areas; and for farinaceous, dairy product, edible oils, confectionary and tea demand is more inelastic in the rural than urban areas.

Estimated total non-food income elasticities for urban and rural are 1.28 and 1.71 respectively, while include 66.5% of urban and 50.2% of rural total expenditures. Clothing is a necessity for urban(0.94) and a luxury for rural areas(2.08). Housing is necessity both for urban (0.89) and rural (0.59).

Furniture is a necessity bundle for urban(0.95), and a luxury for rural(1.49). Health a Nedical care is a necessity for urban (0.98), and a luxury for rural(1.26). Transport \& communication is a luxury bundle for both urban(1.84), and rural(1.58). Entertainment bundle is a luxury for urban(1.30), are a necessity for rural(0.96). Personal services is a luxury for both urban (1.69), and rural(1.23).

POLICY RECCMNENDAMICNS

If the government's policy is tol increase the welfere of the people by increasing their purchasing power, by redistribution of income; or is to control inflation by leving direct and indirect taxes; or is cession of the production or distribution groups of commodities to public or private sectors, and so on, she needs, however, to consider
different aspects particularly income side of the demand.

This study gives some recommendations about urban and rural income side of demands for different commodity bundles in Iran.

However, if the government plans cause a constant increase (*decrease*) in each urban and rural real income, this study recomrends her to observe the following recomrendations:
i. Fercentage of increase(*decrease*) of the supplies of farinaceous, dairy productfedible oils, confectionary and . tea at the urban areas should be more then rural.
ii.Percentage of increase(*decrease*) of the supplies of meat \& fish, vegetable \& fruit, nut \& seed, drinks $\hat{\&}$ tobacco, sauce \& taste and remainder foods at the rural should be more
then uricer syeas.
iii. Fercertage of increase(* cecrease*) of the supplies of housing, trerejort anc communicetion, er.terteinment, personel services at the urban areas snould be more then rural areas.
iv. Percentage of increase(*iecrease*) of the supplies of clothing, furniture, health and medical care should be more at the rural areas than urban.

With respect to the above mertioned points and also the results in the previous chapters, it is concludec and would be recommended that our country needs to have new industries for the buncles whose income elasticities are higher then the others -in the process of cevelopment it is exnected that the general level of income will Erow up- so importance should be given to the following kuncles sequently:
v. For urcan areas sequently: trarsport \& communication, nersonal services, entertainment, edible oils, health a medical care, nut \& seè, furniture, clothing, housirg, drinks \& tobecco, farinaceous, confectionary \& tea, reet \& fish, veeatable \& Iruit, cairy procucts, sauce is teste \& remeincer foocs.
vi. For rumal areas secuently: clothing, rect \& fish,
trarsnort a commurication, furniture, heajth a mecical care, personal services, nut \& seed, entertainment, edible oils, drinks \& tobacco, sauce $\hat{\alpha}$ taste \& remaincer foods, ċairy products.

The notes v, vi, will be suitable if the government does not want to interfere in the consumer consumntion pattern anymore. If she wants to share the cormodities, the rotes v, vi, will be expectec to be cesirable as notes i, ii, iii, iv.

Recommondations for Eurther Research
Just as other studies have been used in the preparation of this one, the present study can serve as a basis for further research. To develope this study there are some points which are interesting to pursue; but the existence of limitations did not let this study be complete.
a. Breaking the commodity bundles to primary items.
b. Division of families with respect to their incomes or total expenditures. By this procedure and with a careful comparisinn , differences among variate income brackets will be brighten.
c. Enterring new variables inside the models:
i. Tamily size;
ii. Household composition;
iii. The highest level so far attained by the household's income;
iv. The prices of the goods in the group or bundle;
v. The prices of goods in competing groups;
vi. Stocks of other goods in the Eroup already held
by the household;
vii. Stocks of coods already held by the household;
d. Classification of the families with respect to the following objectives:
i. Social classes and occupation of the head of the household.
ii. Geographical divisions of the government, which is very useful for public planneres;
iii. Education of the head of household;
iv. Number of occupied persons in the family.

SEIEORED BIBIIOGRAP:Y

AITCHISCN,J.\& J.A.C. BROWN (1957), The Iognormal istribution with srocial Reference to its ises in conomics. Cambridge University fress, Cambridge, England.

AIIEN, R.G.D. \& A.I. BOKIEY (1935), Family Expenditure. Staples Press, こondon.

AITCHISCN, J.\& J.A.C. BROWN (1954-5), A Synthesis of Engel. Curve Theory, Review of Econ. Stud., 1954-5, 22(1), 35-46 BECKER, G.S. (1971), Economic Theory ,A.A. Knopf Books in Economics U.S.A.

BLACKORBY,C.,G.IADY, D.NISSEN \& R.R. RUSSELI (1970), Homothetic Separability \& Consumer Budgeting. Economstrica 38 (1970) 468-472.

BROWN, J.A.C. \& A.DEATON (1972), Survey in Applied 3conomics: Models of ©onsumer Behaviour . Economic Journal 82 (1972) 1145-1236.

BAUMOL, W.J. (1972), Economic Theory and Cperations inalysis. Englewood Cliffs, N.J.:Prentice Hall, Inc.

BRIDGE, G.E. (1971), Applied Econometrics; Iondon, North Holland Publishing Compañy.

BARON, A.Ie, (1970) Iong Term Projections of Supply and Demard for Seleted Agricultural Products in Iran; Utan State Unịversity.

CHAPPEROWN, D.G. (1969), Uncertainty and Estimation in
Economics, VoI.2, Cliver \& Boyd, Edinburg.
Chaipenichic, D.G. (1057), The General Form of the Adding-UF
Criterion, Journal of Royal Statistical Society, Series A (General), Vol. 120.

CRCCKET J. \& FRIEND I. (1962), A Complete Set of Consumer Demand Relationships United States, 1962.
CHIPNAN, J.S. (1965), A Survey of the Theory of International
Trade: Part I: The Classic Theory, Econometrica 33 (1965) 477-519.

CRAKER J.S. (1958), Ownership Elasticities of Durable Consumer
Goods, Review of Economic Studies, Feb. 1958; 25; 87-06.
CRAMER, J.S. (1969), Bmpiniscl Econometrics, North-Holland Company, Amsterdam.

CRAMER, J.S., (1962), A Statistical Mociel of the Ownershin of Major Consumer Durables with an Application to some Findings of the 1953 Oxford Savings Survey, Cambridge University Press, Cambriage.

COURT, R.H., (1967), Utility Naximization and Demand for New Zealand Meats; Zconometrica, Vol. 35, 1967. CLUGH A., PCWELI A., "IIIIAN: R.A. (1977), Fetterne in Household Demand and Savine; Horld Eank, Oxford University Press.

ChIPMAN, J.S. (1960), The Foundation of Utility. Econometrica 28(2): 193-224

CRAPER,J.S. (1970), Interaction of Frices\& Zncome in Consumer Iemand.European Economic Review 1 (1970) 428-436.
DRAPER J.E. \& KLINGMAN,J.S., (1972), Nathematical Analysis Harper and Row, International Edition.
DADGOSTAR, B. (1977), Consumer Demand for Agricultural Products in Thailand, Iowa State University; PH.D. Thesis, Mo. 3 CARD. DORFMAN,R. (1964), The Price Systern. Englewood Cliffs, N.J.: Prentice-Hall, Inc. DUESENBERRY, J.S. (1949). Income, Saving, and the Theory of Consu mer Behavior. Harvard University Press, Cambridge, Nass. ENGEL, E. (1857), Die Produktions- und Konsumptionsverhaltnisse des kBnigreichs Staichsen. Zeitschrift des statistischen Bureaus des Kbniglichen SHchsischen Ninisterium des Innern, Nos. 8 and 9; 1857. Reprinted in Bulletin de I'Institut International de Statistique 9 (1895).
FOOTE, R.J, (1958), Analytical Zools for Studing Iemand and Price Structure. U.S.D.A. Agricultural Handbook 146.
FOX, K.A. (1968), Intermediate Economic Statistics. New York: John Wiley and Sons, Inc.
FRIEND, I. \& R.JONES, (1960) A Study of Consumer Expenditures, Income and Eaving: Proceeding of conference or. consumption
and Savirgs (University of Eennsylvania, Fhilacelphia) PIOK, P.R.,(1958-9), Naximum Likelihood Estimation of TBrncivist Demend Equations, Review of Economic Stucies; Vol. 26 , 1958-59.
FERGUEON, \& GOULD, (1975); Micro Economic Theory; Richard D. Irwin Inc. Illinois.

FORSYTH, F.G. (1960), The Relationship Between Family Size and Family Expenditure; Journal of Royal Statistical.Society, Series A (General), Vol. 123, 1960.

FERBER R. (1968), Research on Household Behaviour, XII in Surveys of Economic Theory, Vól. III. Nac Millan Iondon. FARREIL, M.J. (1953-4), Some Aggregation Froblems in Demend Analysis; Review of Economic Studies, Vol. 21 ,1953-54. FINNEY, D.J. (1952), Probit Analysis. A Statistical Treatment of Sigmoid Response Curve, Cambridge University Press, Cambridge, 1947,(2nd,edition, 1952).

FRIELNAN, K. (1935-6), Professor Figou's Nethod for Measuring Elasticities of Demand from Budgetary Data, Quarterly Journal of Economics, Vol.50, 1953 -54.
FRISCF, B., (1954), Linear Expenditure Functions, An Expository Article, Econometrica, Vol. 22, 1954.

GOIDBERGER, A.S. (1964), Economic theory iley New york. GOLDBERGミR, A.S. (1967), Functional Form and Utility:A Review of Consumer Demand Theory: System, Nethodology, and Policy Workshop Paper n* 6703, Social System Research Institute University of hisconsin himeo.

GOLDBERGER, A.S. (1969), Directly Additive Utility \& Constant Marginal Budget Shares. Review of 2 conomic Studies 36, 251-262. GOLDBERGER, A.S. \& GAMAIETSOS, T.(1970), A Cross~~untry Comperison of Consumer Expenditure Fatterns. European Economic Review 1, (1970), 357-400.

GREEN, H.A.J., (1964), Aggregation in Economic Analysis, An Introductory Survey, Princeton University Press, New Jersey. HENDERSON, J.M. \& R.E. QUANLT, (1971) Microeconomic Theory. Tokyo: NcGraw-hill Kkogakusha, Itd.
HICKS, J.R. (1956), Arevision of Demand Theory. Oxford University Press, Oxford.

HU, T.W. (1975), Econometrics, University Park Press. Iondon. HOUTHAXYER, H.S.(1952), The Econometrics of Family Eudgets. Journal of the Royal Statistical Society, Series A (General) 115.

HOUTHAKYER, H.S.(1957), An International Comparision of tiousehold $\begin{aligned} & \text { Ixpenditure Patterns, commemorating the centery of }\end{aligned}$

Engel's Law. Econometrica 25, 532-551.
HICES, J.R., (1936), Value and Capital., Cxford University Press, Oxford.

HOUMFAYKER F.S. \& FAIDI J.,(1960), Household Investment in Automobiles; An Intemporal Cross-section Analysis; in Friend I. \& Jones R., Proceedings of the conference on consumption \& saving, VCI. I Philadelphia 1960, p.2. 175-225.

HCUTEAKYミR H.S., (1951-2), Compensated Changes in Quality and Quantity Consumed, Review of Economic Stucies, vol. 19, 1951 - 52.

EOA, T.V. (1968), Inter-Recional Elasticities and Aggregation Bias, A study of consumer demand in Austràlia, Australian Economic papers, Vol.7, 1968.

HEMDERSCN A.K., (1949-50), The Cost of a Family, Review of Economic stucies., Vol. 17.
HENDERSOI A.M., (1049-50), The Cost of Children, Parte I-III, Population Studies, vols. 3-4, 1949-50.
HCUTHAFKER F.S.,(1954), La Forme des Courbes d'Engel; Cahiers du seminaire deconometrie, No.2, 1954.

HOUTHAKKER, H.S. $(1960 \mathrm{a})$, The Influence of Frices and Incomes on Household Expenditure. Bulletin of the International Institute of Statistics 37 .

HOUTHAKKER, H.S. $(1960 \mathrm{~b})$, Additive Preference. Econometrica 28 244-257

HOUTHAKKER, H.S. $\left(1961_{\mathrm{a}}\right)$, Some Problems in the International Comparison of consumption patterns, in R. MOSSE, I'evaluation et le role des besoins de biens de consommation dens les divers regimes economiques. C.N.R.S., Paris, 89-102.
HOUTHAKKER, H.S. $\left(1961_{b}\right)$, The Present State of Consumption
Theory. Econometrica 29, 704-740.
HOUMFAKKER, h.D.(1965), New Evidence on Demand Elasticities.
Econometrica 33, 277-288.
JOHNSTON, J. (1963), Econometric Vethods. McGraw-Hill, London. KPMNTA, J. (1971), Elements of Econometrics. New York: McMillan. KIEIN, I.R. (196 $)$, An Introduction to Econometrics. PrenticeHall, Inc., Englewood cliffs N.J..

LESER, C.E.V. (1941-2), Family Budget -ata and Irice plasticities of Demand. Review of Economic Studies 9 (1941-42).
IANCASIER K. (1974) Introduction to Modern Vicro Economics
Rand McNally College Publishing Co. Chicago.

IEONTIES, W. (1936), Composite Commodities and the Problem of Index Numbers, Sconometrica, vol.4, 1936.
IIVIATAN, A.N., (1961), Errors in Variables and Ergel Curve Analysis, Econometrica, July 1961; 29, 336-62.
LIFPIMT, V., (1959), Determinants of Consumer Demand for Housefurnishings and Equipment, Cembridge, Nass. VORGAN, J.N., (1958), A Review of Recent Research on Consumer Behaviour; in L.H. Clerk, edition, Consumer behavior: Research on consumer reactions, New York, 93-219. MACK, R.P. (1952), Economics of Consumption, in: B.F. Haley edition: A survey of contemporary economics, vol. 2
Homewood, I11: 1052, 39-78.
NURUIISIAR, (1966), Studies in Consumer Demand, voI.2, Dacca University, Oxford University Press, Pakistan Branch. NICHOLSON, J.L., (1949), Variations in Working Class Family Expenditure, Journal of the Royal Statistical Society Series A (General), vol.112, 1949. NICHCIECN, J.I., (1057), The General Form of the Adding-up ciriterion. Journal of Royal Statistical Society, Series A(General) vol. 120, 1957

PRAIS, S.J. (1952-3), Nonlinear Estimates of the Engel Curve Review of Economic Studies, Pt.2,1052-3, 20, 87-104.
PEARCE, I.F. (1064), A Contribution to Demand Aralysis, Cxford.

POILAK,R.A.(1971), Additive Utility E.2nctions and Iinear Engel C urves, Review of conomic Studies, 38, 401-413.
PRAIS,S.J. \& H.S.HCUTHAKKER (1955), The Enalysis of the Eamily Eudgets. Cambridge Lniversity Eress, Cambridge.
PHIIPS, I. (1974), Applied Consumption Analysis. North-Holland Company, New York.
STONE, R. (1954), The i.easurement of Consumer's Expenditure and Behaviour in the U.K. 1920-1938. Vol. 1, Cambridge University Iress, Cambridge.
SLUTSKY, H. (1052), On the Theory of the Budget of the Consumer. in Reading in Price Theory. Edited by G.J.STIGIER and K.E. BOUIDING.,R.D. Irwin, Inc.
SAMUEISON, P.A. (1950), The Problem ofIntegrability in Utility Theory. Economica 17, 355-385. SCHUITZ, H. (1938), The Theory and Measurment of Derrand. Chicago University Iress, Chicago. STUVEI; G. \& JAMES, S.F., (1950), Household Expenditures of Food in Holland, Journal of Royal Statistical Society, Series A. 113, pt.1, 5c-8C. STIGIER G.J.(1954), The Early Eistory of Empirical Studies of Consumer Benavior, Journal of Political Iconomy, April, 42, 95-113. THEIL, F. (1975), Theory and veasurment of Consumer Lemand. New York, North-Holland Company.

TEEIL, H.(1965), Iirear Aggregation of Economic Relations. North-Holland, Amsterdam.
THEII, F. \& NEUDECKER F. (1958), Substitution, Complementarity and the Residual Variation around Engel Curves. Review of Economic Studies, 25, 114-123.
TCRH:QVIST, L. (1941), Review of hork by H. Wold. Ekonomisk Ticskrift, 43, 216-225.
WOID, F. \& JUREEM, I.(1953), Demand Aralysis. New York, Wiley. YOSHIFARA,K.(1969), Demand Functions: in Epplication to the Japanese Expenditure Pattern. Econometrica, 37, 257-274.

SCI (Statistical Center of Iran) publications
INCOME DISTRIBUTION DAT'A (1967-1973); H.Barjini \& F.Mehran; No. 2 Aprill 1977 Department of Financial Statistics and National Accounts (DFSNA)

A IINEAR EXPENDITURE MODEL FOR URBAN IRAN; Mahmoud Arabi \& Farhad Méhran; No. 3 July 1977 (DFSNA)

URBAN CONSUMER PRICES AND INEQUAIITY; Nahmoud Arabi \& Farhad Mehran No. 4 August 1977; (DFSNA)

URBAN HOUSEHCID BULGET SURVEY - 2534,Preliminary and selected results; No. 5 August 1977 (DFSNA)

SAMPIE DESIGN OF THE URBAN AND RURAL HOUSEHOLD BUDGET SURVEYS (2533 - 2534) No. 6 sept.1977; (DFSNA)

STATISTICAL RESUITS CF URBAN HOUSEHOID BUDGET SURVEY 1356; (Persain); 1359.

STATISTICAI RESULTS OF RURAL HOUSEHOID BUDGET SURVEY 1356; (Persian); 1359.

INCONE ELASTICITY OF DEMAND FOR GOODS OF URBAN AND RURAL HOUSEHOLD YEAR 1351; (Persian)

IFCONE EIASTICITY OF LEMIND FOR GOCDS OF URBAN AND RURAL HOUSEHOLD YEARS 1347-1348 (Persian)

STATISTICAI MANUAL OF URBAN HCUSEHOID BUDGET SURVEY 1356; (Persian)

STATISTICAL MANUAL OF RURAL HOUSEHOLD BUDGET SURVEY 1356; (Persian) ∇

DESCRIPTION OF SANPIE SURVEYS OF URBAN AND RURAL HCUSE--HOLD CCNSLNPTION AND INCCNE; 1975 (2534), (Persain), (DFSNA) HOUSEHCID BULGET SURVEY QUESTIONNAIRE 1356; (Persain)

Dark Narkazi Iran Publications
SURVEY OF CCNSUNER EXPENDITURES AND INCCNE IN 32 URBAN CITIES CF IRAN, 1962, Bulletin, Vol.1, No. 2; pp. 23-43.

INCONE ELASTICITY OF DEFAND FOR GOODS AND SERVICES IN URBAN AREAS CF IRAN DURIIG 1347; Bulietin, VoI. 10, No.55; pp. 15-35.

ESTIMATION OF INCONE ELASTICITY CF DENAND FOR FOCD COMNODIMIES OF UREAN TRAN 1353; Bulletin 1356 , 16 th year, No. 174; pp. 3-47; (persian).

ESTIMATICN CF INCONE ELASTICITY OF DENAND FOR FOOD COMMODITIES OF URBAN IRAN 1351; Industry \& Construction Dept. unpublished,(persain).

APPENDIX A

There are 'i' items of commodities whose - Angel's curves have been estimated before; now combined Angel's curve and income elasticity of all items inside a new complex bundle is requested:

$$
\begin{aligned}
& S_{\mathbf{k}} \quad \text { expenditure of the new complex bundle; } \\
& S_{i} \quad \text { expenditure of the item } i, \quad i=1,2,3, \ldots, n
\end{aligned}
$$

so:

$$
S_{k}=\sum_{i=1}^{n} S_{i}
$$

If the items Angel curves had the following functional form:

$$
S_{i}=A_{i}+B_{i} Y^{m}
$$

so:

$$
S_{k}=\sum_{i=1}^{n} A_{i}+Y^{m} \sum_{i=1}^{n} B_{i}
$$

and its income elasticity(complex bundle):

$$
E_{k}=\frac{m Y^{m} \sum_{i=1}^{n} B_{i}}{\sum_{i=1}^{n} A_{i}+Y^{m} \sum_{i=1}^{n} B_{i}}=m\left(1-\frac{\sum_{i=1}^{n} A_{i}}{\sum_{i=1}^{n} S_{i}}\right)
$$

If the Angel's curve of the items had not the same exponent (m), we use these formula:

$$
S_{j}=A_{j}+B_{j} Y^{m}
$$

so the complex Angel curve:

$$
S_{k}=\sum_{j=1}^{n} S_{j}=\sum_{j=1}^{n} A_{j}+\sum_{j=1}^{n} B_{j} Y^{m}
$$

and its income elasticity:

$$
E_{k}=\frac{\sum_{j=1}^{n} m_{j} B_{j} Y^{m}{ }_{j}}{\sum_{j=1}^{n} A_{j}+\sum_{j=1}^{n} B_{j} Y^{m_{j}}}=\frac{\sum_{j=1}^{n} m_{j} B_{j} Y^{m_{j}}}{\sum_{j=1}^{n} S_{j}}
$$

The above formula are applicable to the models:(A),(C),(D), (E), (I), (J), (K), (I).

If the models of the items all were of kind (G):

$$
S_{j}=a_{j} Y^{B_{j}}
$$

So:

$$
S_{k}=\sum_{j=1}^{n} S_{j}=\sum_{j=1}^{n} a_{i} Y^{B}
$$

and its income elasticity:

$$
E_{k}=\frac{\sum_{j=1}^{n} B_{j} S_{j}}{\sum_{j=1}^{n} S_{i}}
$$

And for general form:

$$
S_{j}=f_{j}(Y) \quad j=1,2,3, \ldots, n
$$

so the combined Engel curve:

$$
S_{k}=\sum_{j=1}^{n} S_{j}=\sum_{j=1}^{n} f_{j}(Y)
$$

and its income elasticity:

$$
E_{k}=\frac{d S_{k}}{d Y} \cdot \frac{Y}{S_{k}}=\frac{Y \sum_{j=1}^{n} \frac{d f_{j}(Y)}{d Y}}{\sum_{j=1}^{n} S_{j}}
$$

These calculating formula also can be applied to combine income elasticities and Inge curves of some different regions markets and etc.

APPENDIX B

With a careful comparison we will find that at the models with the general form $S=A+B Y^{m}, m>1$, when'm'increases slowely, amount of ' B ' lecreases incrementally; so for some models in the text B^{\prime} 's are equal to $C .00000$, but they are not actually zero, beacuse SPSS computer program calculations is not able to write down the digits less than 0.00001 .

Now we calculate the actual amount of ' B ' by using means of the variables, in this way:

$$
S=A+B Y^{m}
$$

and also we can write:

$$
\bar{S}=A+B \bar{Y}^{m}
$$

so:

$$
B=\frac{\bar{S}-A}{\bar{Y}(m)}
$$

And also for the model $\operatorname{In} S=A+B Y$ this problem exists.

$$
\operatorname{In} S=A+B Y
$$

and also we can write:

$$
\operatorname{In} \bar{S}=A+B \bar{Y}
$$

so:

$$
B=\frac{\operatorname{Ln} \bar{S}-A}{\bar{Y}}
$$

"

.

